K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

P=(4x2 -4x+1)+(y2- 2x+1)+1.

<=>P=(2x-1)^2+(x-1)^2+1.

Ta có:(2x-1)^2>=0với mọi x.

(y-1)^2>=0 với mọi y.

=>P>=1 với mọi x,y.

Dấu bằng sảy ra khi 2x-1=0 và y-1=0 <=>x=1/2 và y=1

 

7 tháng 7 2017

Sorry nhá mk nhầm : 

Ta có : A = 4x2 - 4x + 2017

=> A = (2x)2 - 4x + 1 + 2016

=> A = (2x - 1)2 + 2016

Mà ; (2x - 1)2 \(\ge0\forall x\)

Nên :  A = (2x - 1)2 + 2016 \(\ge2016\forall x\)

Vậy Amin = 2016 , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

7 tháng 7 2017

Ta có : A = 4x2 - 4x + 2017 

=> A = (2x)2 - 4x + 4 + 2013

=> A = (2x - 2)+ 2013

Mà : (2x - 2)\(\ge0\forall x\)

Nên A = (2x - 2)+ 2013 \(\ge2013\forall x\)

Vậy Amin = 2013 , dấu "=" sảy ra khi va chỉ khi x = 1

25 tháng 10 2017

Ta có:

\(P=2x^2+y^2-2xy+4x-2y+3=\left[y^2-2y\left(x+1\right)+\left(x+1\right)^2\right]+x^2+2x+1+1\)

\(=\left(y-x-1\right)^2+\left(x+1\right)^2+1\)

\(\left(y-x-1\right)^2\ge0\)với mọi x;y

\(\left(x+1\right)^2\ge0\)với mọi x.

\(\Rightarrow P\ge1\)với mọi x;y

\(\Rightarrow\)GTNN của P là 1 đạt được \(\Leftrightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)


 

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

5 tháng 7 2016

bài này dài lăm mk làm giúp 1 câu

A = (x -y)+ (x+1)2 + (y-1)2 + 1

vậy GTNN = 1

(bn phân h 2x= x2 + x2

  2y2 = y2+ y và 3 =1+1+1

là hiểu cách mk làm , còn nếu k hiểu ra đưa thầy giáo ,thầy sẽ gọi mk là thiên tài)

6 tháng 7 2016

bạn đó giải rồi nhung nếu cần mình giải kỹ thì nhắn tin mình nha

22 tháng 8 2018

*\(A=x^2+2y^2-2xy-4x-6y-3\)

\(A=x^2-2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2-10y+25\right)-32\)

\(A=x^2-2x\left(y+2\right)+\left(y+2\right)^2+\left(y-5\right)^2-32\)

\(A=\left(x-y-2\right)^2+\left(y-5\right)^2-32\ge-32\)

\(\Rightarrow Min_A=-32\Leftrightarrow x=7;y=5\)

* \(B=4x^2+2y^2-4xy+4x+6y+1\)

\(B=\left(2x\right)^2-\left(4xy+4x\right)+\left(y^2-2y+1\right)+\left(y^2+8y+16\right)-16\)\(B=\left(2x\right)^2-2.2x\left(y-1\right)+\left(y-1\right)^2+\left(y+4\right)^2-16\)\(B=\left(2x-y+1\right)^2+\left(y+4\right)^2-16\ge-16\)

\(\Rightarrow Min_B=-16\Leftrightarrow x=-\dfrac{5}{2};y=-4\)

31 tháng 5 2016

1) \(C=-\left(x^2-6x+9\right)+5\)

\(\Leftrightarrow C=-\left(x-3\right)^2+5.\)

Vậy GTLN của C là 5 <=> x=3

3) \(E=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)

\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5\)

Vậy GTNN của E bằng 5 <=> x=-2 và y=1

31 tháng 5 2016

Dương: Câu c là GTLN em nhé :)

b. Ta chia ra thành các trường hợp:

- Với \(x\ge3,D=\left(x-3\right)\left(2-x+3\right)=\left(x-3\right)\left(5-x\right)=-x^2+8x-15=1-\left(x-4\right)^2\le1\)

- Với \(x< 3,D=\left(3-x\right)\left(2-3+x\right)=\left(3-x\right)\left(x-1\right)=-x^2+4x-3=1-\left(x-2\right)^2\le1\)

Vậy GTLN của D = 1 khi x = 4 hoặc x = 2.

Chúc em học tốt :))