Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+y^2-2x+6y+20\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+10\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+10\ge10\)
Vậy GTNN của A là 10 khi \(x=1\) và \(y=-3\)
\(B=x^2+2y^2+2xy-4x-8y+2014\)
\(=\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4\right]+\left(y^2-4y+4\right)+2006\)
\(=\left(x+y-2\right)^2+\left(y-2\right)^2+2006\ge2006\)
Vậy GTNN của B là 2006 khi \(x=0\) và \(y=2\)
\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
Bài 2:
a: \(=-\left(x^2+2x-100\right)\)
\(=-\left(x^2+2x+1-101\right)\)
\(=-\left(x+1\right)^2+101< =101\)
Dấu = xảy ra khi x=-1
b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)
Dấu = xảy ra khi x=1/6
c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)
\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)
\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)
Dấu = xảy ra khi x=3 và y=-1
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
1) Nhờ sự trợ giúp đắc lực từ máy tính casio ta tìm được ngay kết quả
\(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)=4\forall x\).Đã có kết quả,nhưng bài làm vẫn là thứ không thể thiếu:
Ta có: \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)
\(=4x^2+6x+9+4x^2+10x+25-\left(4x+6\right)\left(2x+5\right)\)
\(=4x^2+6x+9+4x^2+10x+25-2x\left(4x+6\right)+5\left(4x+6\right)\)
\(=4x^2+6x+9+4x^2+10x+25-8x^2+12x+20x+30=4\) (tới bước này mình tính ngoài giấy nháp rồi ra kết quả luôn nhé)
a) \(2x-2y-x^2+2xy-y^2\)
\(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(9x^2+6xy+y^2-25\)
\(=\left(3x\right)^2+6xy+y^2-25\)
\(=\left(3x+y\right)^2-5^2\)
\(=\left(3x+y+5\right)\left(3x+y-5\right)\)
1,
a, = 2x.(x-2)
b, = (x^2+y^2+2xy)-(2x+2y)
= (x+y)^2-2.(x+y)
= (x+y).(x+y-2)
2,
a,<=> x^2-1-x^2-2x = 3
<=> -2x-1=3
<=> -2x=4
<=> x=4 : (-2) = -2
b, <=>(x^2-4x+4)-7=0
<=>(x-2)^2-7=0
<=> (x-2)^2=7
=> x-2=+-\(\sqrt{7}\)
<=> x=2+-\(\sqrt{7}\)
k mk nha
a, \(2x-4x\)
\(=-2x\)
b, \(x^2+y^2+2xy-2x-2y\)
\(=\left(x+y\right)^2-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-2\right)\)
a, \(\left(x+1\right)\left(x-1\right)-x\left(x+2\right)=3\)
\(\Leftrightarrow x^2-1-x^2-2x=3\)
\(\Leftrightarrow-2x=4\)
\(\Leftrightarrow x=-2\)
b,\(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)