Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(•B=4x-9x^2=-\left(9x^2-4x\right)\\ =-\left(9x^2-3x.2.\dfrac{2}{3}+\dfrac{4}{9}\right)+\dfrac{4}{9}\\ =-\left(3x-\dfrac{2}{3}\right)^2+\dfrac{4}{9}\le\dfrac{4}{9}\\dấu\: "="\: xảy\: ra\: khi\: x=\dfrac{2}{9}\\ vậy\: MAX_B=\dfrac{4}{9}\: tại\: x=\dfrac{2}{9}\\ •C=5-2x-4x^2=-\left(4x^2+2x-5\right)\\ =-\left(4x^2+2.2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{21}{4}\\ =-\left(2x+\dfrac{1}{2}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\\ dấu\: "="\: xảy\: ra\: khi\: x=-\dfrac{1}{4}\\ vậy\: MAX_C=\dfrac{21}{4}\: tại\: x=\dfrac{-1}{4}\\ •D=7+3x-x^2=-\left(x^2-3x-7\right)\\ =-\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{37}{4}\\ =-\left(x-\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\\ dấu\: "="\: xảy\: ra\: khi\: x=\dfrac{3}{2}\\ vậy\: MAX_D=\dfrac{37}{4}\: tại\: x=\dfrac{3}{2}\)\(•E=1+x-x^2=-\left(x^2-x-1\right)\\ =-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\\ dấu\:"="\:xảy\:ra\:khi\:x=\dfrac{1}{2}\\ vậy\:MAX_E=\dfrac{5}{4}\:tại\:x=\dfrac{1}{2}\\ •F=-5x-6x^2\\ -\dfrac{F}{6}=x^2+\dfrac{5}{6}x=x^2+2.x.\dfrac{5}{12}+\dfrac{25}{144}-\dfrac{25}{144}\\ -\dfrac{F}{6}=\left(x+\dfrac{5}{12}\right)^2-\dfrac{25}{144}\\ F=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{25}{24}\le\dfrac{25}{24}\\ dấu\: "="\: xảy\: ra\: khi\: x=\dfrac{-5}{12}\\ vậy\: MAX_F=\dfrac{25}{24}\: tại\: x=\dfrac{-5}{12}\)
\(B=4x-9x^2=-9\left(x^2-\dfrac{4}{9}x+\dfrac{4}{81}\right)+\dfrac{4}{9}\)
\(=-9\left(x-\dfrac{2}{9}\right)^2+\dfrac{4}{9}\le\dfrac{4}{9}\forall x\)
vậy Max B = \(\dfrac{4}{9}\) khi \(x-\dfrac{2}{9}=0\Rightarrow x=\dfrac{2}{9}\)
\(C=5-2x-4x^2=-4\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)+\dfrac{21}{4}\)\(=-4\left(x+\dfrac{1}{4}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\)
Vậy Max C = \(\dfrac{21}{4}\) khi \(x+\dfrac{1}{4}=0\Rightarrow x=-\dfrac{1}{4}\)
\(D=7+3x-x^2\)
\(=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{37}{4}\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\forall x\)
Vậy Max D = \(\dfrac{37}{4}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(E=1+x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{5}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\forall x\)
Vậy Max E = \(\dfrac{5}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(F=-5x-6x^2=-6\left(x^2+\dfrac{5}{6}x+\dfrac{25}{144}\right)+\dfrac{25}{24}\)\(=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{25}{24}\le\dfrac{25}{24}\forall x\)
Vậy Max F = \(\dfrac{25}{24}\) khi \(x+\dfrac{5}{12}=0\Leftrightarrow x=-\dfrac{5}{12}\)
a, \(A=9x^2-6x+5\)
\(=\left(9x^2-6x+1\right)+4\)
\(=\left(3x-1\right)^2+4\)
ta có:
\(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\forall x\)
Vậy Min A = 4
Để A = 4 thì \(3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(b,B=4x^2-5x\)
\(=\left(4x^2-5x+\dfrac{25}{16}\right)-\dfrac{25}{16}\)
\(=\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\)
TA có:
\(\left(2x-\dfrac{5}{4}\right)^2\ge\forall x\Rightarrow\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\ge-\dfrac{25}{16}\forall x\)Vậy Min B = \(-\dfrac{25}{16}\)
Để B = \(-\dfrac{25}{16}\) thì \(2x-\dfrac{5}{4}=0\Rightarrow2x=\dfrac{5}{4}\Rightarrow x=\dfrac{5}{8}\)
\(c,C=3x^2-6x\)
\(=3\left(x^2-2x+1\right)-3\)
\(=3\left(x-1\right)^2-3\)
Ta có:
\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-3\ge-3\)
vậy Min C = -3
Để C = -3 thì x-1=0 => x = 1
\(d,D=5x^2-15x\)
\(=5\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{45}{4}\)
\(=5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\)
Ta có:
\(5\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)Vậy Min D = \(-\dfrac{45}{4}\)
Để \(D=-\dfrac{45}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(e,E=x^2+3x+4\)
\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
Vậy Min E = \(\dfrac{7}{4}\) khi \(x+\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(f,F=2x^2-4x+7\)
\(=2\left(x^2-2x+1\right)+5\)
\(=2\left(x-1\right)^2+5\ge5\forall x\)
Vậy Min F = 5 khi x - 1 =0 => x = 1
\(g,2x^2-3x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{8}\)
\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\forall x\)
Vậy Min G = \(\dfrac{-9}{8}\) khi \(x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)
\(h,H=3x^2-4x=3\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}\)
\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)
Vậy Min H = \(-\dfrac{4}{3}\) khi \(x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
\(a,x^2-5x\)
\(=x\left(x-5\right)\)
\(b,5x\left(x+5\right)+4x+20\)
\(=5x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(5x+4\right)\left(x+5\right)\)
\(c,7x\left(2x-1\right)-4x+2\)
\(=7x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(7x-2\right)-\left(2x-1\right)\)
\(d,x^2-16+2\left(x+4\right)\)
\(=x^2-16+2x+8\)
\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) )
\(e,x^2-10x+9\)
\(=x^2-x-9x+9\)
\(=x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé )
\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)
\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)
Vậy ...
\(a,A=6x^2-6x+1\)
\(=6\left(x^2-x+\frac{1}{4}\right)-\frac{1}{2}\)
\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
\(b,B=3+2x+3x^2\)
\(=3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{8}{3}\)
\(=3\left(x+\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Dấu = xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)
Vậy \(Min_B=\frac{8}{3}\Leftrightarrow x=-\frac{1}{3}\)
\(c,C=4x+2x^2-3\)
\(=2\left(x^2+2x+1\right)-5\)
\(=2\left(x+1\right)^2-5\ge-5\)
Dấu = xảy ra \(\Leftrightarrow x=-1\)
Vậy \(Min_C=-5\Leftrightarrow x=-1\)
\(d,D=10x+6+x^2\)
\(=\left(x^2+10x+25\right)-19\)
\(=\left(x+5\right)^2-19\ge-19\)
Dấu = xảy ra \(\Leftrightarrow x=-5\)
Vậy \(Min_D=-19\Leftrightarrow x=-5\)
\(e,E=8x^2-6x+3\)
\(=8\left(x^2-\frac{3}{4}x+\frac{9}{64}\right)+\frac{15}{8}\)
\(=8\left(x-\frac{3}{8}\right)^2+\frac{15}{8}\ge\frac{15}{8}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{3}{8}\)
Vậy \(Min_E=\frac{15}{8}\Leftrightarrow x=\frac{3}{8}\)
a) Ta có:A = 6x2 - 6x + 1 = 6(x2 - x + 1/4) - 1/2 = 6(x - 1/2)2 - 1/2
Ta luôn có : (x - 1/2)2 \(\ge\)0 \(\forall\)x --> 6(x - 1/2)2 \(\ge\) 0 \(\)x
=> 6(x - 1/2)2 - 1/2 \(\ge\)-1/2 \(\forall\)x
hay A \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra khi : (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2
Vậy Amin = -1/2 tại x = 1/2
\(a,A=6x^2-6x+1\)
\(=6\left(x^2-x+\frac{1}{6}\right)\)
\(=6\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{6}\right]\)
\(=6\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{12}\right]\)
\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)
\(A_{min}=-\frac{1}{12}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
a: \(=-\left(x^2+10x-11\right)\)
\(=-\left(x^2+10x+25-36\right)\)
\(=-\left(x+5\right)^2+36< =36\)
Dấu '=' xảy ra khi x=-5
b: \(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4< =4\)
Dấu '=' xảy ra khi x=3
c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
d: \(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9< =9\)
Dấu '=' xảy ra khi x=-1