K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

\(E=5x^2+y^2+10+4xy-14x-6y\)

\(E=\left(2x+y-3\right)^2+\left(x-1\right)^2+6\)

Vì \(\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\)

Dấu '=" xảy ra.......................

28 tháng 9 2015

 

4x2+5y2-4xy-16y+22

=4x2-4xy+y2+4y2-16xy+16+6

=(2x+y)2+(2x-4)2+6

Vì (2x+y)2;(2x-4)2\(\ge\)0 nên (2x+y)2+(2x-4)2+6\(\ge\)6

Dấu "=" xảy ra khi 2x-4=0 và 2x+y=0

                     <=>  x=2 và 2.2+y=0

                    <=>x=2 và y=-4

Vậy GTNN của biểu thức là 6 tại x=2;y=-4

 

2 tháng 9 2018

\(E=5x^2+y^2+10+4xy-14x-6y\)

\(=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)

\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)

\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\)

\(\Rightarrow E_{Min}=0\)

\("="\Leftrightarrow x=y=1\)

2 tháng 9 2018

Ta có E= \(\left(4x^2+y^2+9-6y-12x+4xy\right)+\left(x^2-2x+1\right)\)

=\(\left(2x+y-3\right)^2+\left(x-1\right)^2\)

\(\left(2x+y-3\right)^2+\left(x-1\right)^2\) >= 0

=>E>=0 =>GTNN của E=0 khi: \(x-1=0\) =>\(x=1\)

\(2x+y-3=0\) =>\(2x+y=3\)

=> \(2+y=3\) => \(y=1\)

23 tháng 7 2015

x+y-x+6y+10= x2-x+\(\frac{1}{4}\)+y2+6y+9+\(\frac{3}{4}\)=(x-\(\frac{1}{2}\))2+(y+3)2+\(\frac{3}{4}\) ≥\(\frac{3}{4}\)

Daauus bằng xảy ra khi và chỉ khi x=\(\frac{1}{2}\) và y= -3

Suy ra Min= \(\frac{3}{4}\)

23 tháng 7 2015

xét x2  + y- x + 6y + 10

= ( x2 - 2 . x .1/2 + 1/4) + ( y2 + 2 .y .3 + 9) + 3/4

= (x + 1/2)2 + (y + 3)2 + 3/4

Vì (x + 1/2) 2 > 0 vói mọi x

( y + 3)2 > vưới mọi x

3/4 > 0

=> (x + 1/2)2 + (y+3)2 + 3/4

=> M có GTNN là 3/4 <=> (x+1/2)= 0 -> x + 1/2=0 -> x = -1/2

và (y + 3)2 = 0 -> y +3 = 0 -> y =-3

Vậy M có GTNN là 3/4 khi x = -1/2 và y =-3

 

 

đấy là 1 cahs tách cậu có thể tìm và tham khảo các cách khác : '> đừng thụ động quá nhé

 

a) Ta có: \(A=9x^2-12x+10\)

\(=\left(3x\right)^2-2\cdot3x\cdot2+4+6\)

\(=\left(3x-2\right)^2+6\)

Ta có: \(\left(3x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-2\right)^2+6\ge6\forall x\)

Dấu '=' xảy ra khi \(3x-2=0\)

\(\Leftrightarrow3x=2\)

hay \(x=\frac{2}{3}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=9x^2-12x+10\) là 6 khi \(x=\frac{2}{3}\)

19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1