Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=5x^2+y^2+10+4xy-14x-6y\)
\(=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)
\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)
\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\)
\(\Rightarrow E_{Min}=0\)
\("="\Leftrightarrow x=y=1\)
Ta có E= \(\left(4x^2+y^2+9-6y-12x+4xy\right)+\left(x^2-2x+1\right)\)
=\(\left(2x+y-3\right)^2+\left(x-1\right)^2\)
Vì \(\left(2x+y-3\right)^2+\left(x-1\right)^2\) >= 0
=>E>=0 =>GTNN của E=0 khi: \(x-1=0\) =>\(x=1\)
\(2x+y-3=0\) =>\(2x+y=3\)
=> \(2+y=3\) => \(y=1\)
x+y-x+6y+10= x2-x+\(\frac{1}{4}\)+y2+6y+9+\(\frac{3}{4}\)=(x-\(\frac{1}{2}\))2+(y+3)2+\(\frac{3}{4}\) ≥\(\frac{3}{4}\)
Daauus bằng xảy ra khi và chỉ khi x=\(\frac{1}{2}\) và y= -3
Suy ra Min= \(\frac{3}{4}\)
xét x2 + y2 - x + 6y + 10
= ( x2 - 2 . x .1/2 + 1/4) + ( y2 + 2 .y .3 + 9) + 3/4
= (x + 1/2)2 + (y + 3)2 + 3/4
Vì (x + 1/2) 2 > 0 vói mọi x
( y + 3)2 > vưới mọi x
3/4 > 0
=> (x + 1/2)2 + (y+3)2 + 3/4
=> M có GTNN là 3/4 <=> (x+1/2)2 = 0 -> x + 1/2=0 -> x = -1/2
và (y + 3)2 = 0 -> y +3 = 0 -> y =-3
Vậy M có GTNN là 3/4 khi x = -1/2 và y =-3
đấy là 1 cahs tách cậu có thể tìm và tham khảo các cách khác : '> đừng thụ động quá nhé
a) Ta có: \(A=9x^2-12x+10\)
\(=\left(3x\right)^2-2\cdot3x\cdot2+4+6\)
\(=\left(3x-2\right)^2+6\)
Ta có: \(\left(3x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-2\right)^2+6\ge6\forall x\)
Dấu '=' xảy ra khi \(3x-2=0\)
\(\Leftrightarrow3x=2\)
hay \(x=\frac{2}{3}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=9x^2-12x+10\) là 6 khi \(x=\frac{2}{3}\)
2/ x+y=2 => y=2-x
\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)
\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)
=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2
1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)
Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)
Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
<=> x=1 hoặc x=1