K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Đoạn dấu \(\left|x-2008\right|+\left|8-x\right|\le\left|x-2008+8-x\right|\) nhầm rồi ạ. Phải là dấu \(\ge\)

27 tháng 8 2023

G = |\(x\) - 2008| + |\(x\) - 8| 

Vì |\(x-8\)| = |8 - \(x\)

⇒ G = |\(x\) - 2008| + |\(x\) - 8| = |\(x\) - 2008| + |8 - \(x\)|

G = |\(x\) - 2008| + |8-\(x\)\(\ge\) |\(x-2008\) + 8 - \(x\)| = 2000

Dấu bằng xảy ra ⇔ (\(x\) - 2008).(8 - \(x\)) ≥ 0

Lập bảng ta có:

\(x\)                      8                    2008
8 - \(x\)              +      0        -                      -             
\(x\) - 2008              -                -              0      +
(\(x\) - 8).(\(x\) - 2008)             -        0        +            0      -

Theo bảng trên ta có: Gmin = 2000 ⇔ 8 ≤ \(x\) ≤ 2008

 

3 tháng 10 2019

Vì \(5x=2y=3z\)

\(\Rightarrow5x:30=2y:30=3z:30\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Lại có: \(x+y-2=220\Rightarrow x+y=222\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)

Vậy ...

3 tháng 10 2019

Bài 1:

\(5x=2y=3z\)

\(\Rightarrow5x:30=2y:30=3z:30\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Vì \(x+y-2=220\Rightarrow x+y=222\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)

8 tháng 8 2016

/ x - 2008 / = / 2008 - x /

=>/x - 2008/ + /x + 2009/ = /2008 - x/ + /x + 2009/\(\ge\)/2008 - x + x + 2009/ = 4017

Đẳng thức xảy ra khi: (2008 - x)(x + 2009)=0 => x = 2008 hoặc x = -2009

Vậy giá trị nhỏ nhất của / x - 2008 / + / x + 2009 / là 4017 khi x = 2008 hoặc x= -2009

(dấu gạch chéo // là dấu giá trị tuyệt đối nha)

28 tháng 11 2021

Ta có \(\left(x-\dfrac{2}{7}\right)^{2008}\ge0\) với mọi x

           \(\left(0,2-\dfrac{1}{5}y\right)^{2010}\ge0\) với mọi y 

           \(\left(-1\right)^{200}=1\) 

\(\Rightarrow N=\left(x-\dfrac{2}{7}\right)^{2008}+\left(0,2-\dfrac{1}{5}y\right)^{2010}+\left(-1\right)^{200}\ge1\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{2}{7}\right)^{2008}=0\\\left(0,2-\dfrac{1}{5}y\right)^{2010}=0\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{7}=0\\0,2-\dfrac{1}{5}y=0\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\\dfrac{1}{5}y=0,2\end{matrix}\right.\) 

                              \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\) 

Vậy Nmin = 1 \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\) 

28 tháng 11 2021

nếu đúng tick cho mk nha :)

28 tháng 11 2021

\(N=\left(x-\dfrac{2}{7}\right)^{2008}+\left(0,2-\dfrac{1}{5}y\right)^{2010}-1\ge-1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{7}=0\\\dfrac{1}{5}-\dfrac{1}{5}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)

28 tháng 11 2021

Hoàng Minh ơi

4 tháng 12 2016

Áp dụng bđt $|a| + |b| \geqslant |a+b|$ với dấu '=' tại $ab \geqslant 0$ :

$$G = |x-2014| + |x-1| = |x-2014| + |1-x| \geqslant |x-2014 + 1 - x| = 2013$$

Vậy $G_\text{min} = 2013 \iff (x-2014)(1-x) \geqslant 0 \iff 1 \leqslant x \leqslant 2014$

4 tháng 12 2016

\(G=\left|x-2014\right|+\left|x-1\right|=\left|x-2014\right|+\left|1-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2014\right|+\left|1-x\right|\ge\left|x-2014+1-x\right|=2013\)

Dấu = khi \(1\le x\le2014\)

Vậy MinG=2013 khi \(1\le x\le2014\)

2 tháng 3 2022

Tham khảo:

undefined

CHÚC EM HỌC TỐT NHÁoaoa

24 tháng 3 2020

Ta có: B = |x - 2| + |x - 8|

=> B = |x - 2| + | 8 -x| \(\ge\)|x - 2 + 8 - x| = |6| = 6

Dấu "=" xảy ra <=> (x - 2)(8 - x) \(\ge\)

=> 2 \(\le\)\(\le\)8

Vậy MinB = 6 khi \(2\le x\le8\)