Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x \(\ge\)0; x \(\ne\)1 ; x \(\ne\)4
a) P = \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
P = \(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}:\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)
P = \(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\cdot\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-x-\sqrt{x}+4}\)
P = \(\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{4-x}\)
P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) P < 0 <=> \(\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
Do \(\sqrt{x}+2>0\) => \(\sqrt{x}-1< 0\) => \(\sqrt{x}< 1\) => \(x< 1\)
kết hợp với đk => S = {x| \(0\le x< 1\)}
c) P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)
Do \(\sqrt{x}+2\ge2\) => \(-\frac{3}{\sqrt{x}+2}\ge-\frac{3}{2}\) => \(1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 0
Vậy MinP = -1/2 khi x = 0
Ta có :
\(y=\frac{2}{1-x}+\frac{1}{x}\)
\(\Rightarrow y=\frac{2\left(1-x\right)+2x}{1-x}+\frac{1-x+x}{x}\)
\(\Rightarrow y=2+\frac{2x}{1-x}+\frac{1-x}{x}+1\)
\(\Rightarrow y=\frac{2x}{1-x}+\frac{1-x}{x}+3\)
Vì \(0< x< 1\Rightarrow\hept{\begin{cases}\frac{2x}{1-x}>0\\\frac{1}{x}>0\end{cases}}\)
Áp dụng BĐT Cô si cho 2 số dương , ta có :
\(\Rightarrow y=\frac{2x}{1-x}+\frac{1-x}{x}+3\ge2\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}+3=2\sqrt{2}+3\)
Dấu "=" xảy ra khi \(\frac{2x}{1-x}=\frac{1-x}{x}\Leftrightarrow\left(1-x\right)^2=2x^2\Leftrightarrow x^2+2x-1=0\Leftrightarrow\left(x+1\right)^2=2\Rightarrow x=\sqrt{2}-1\)
( vì\(0< x< 1\) )
Vậy \(Min_y=2\sqrt{2}+3\) khi \(x=\sqrt{2}-1\)
\(y=\frac{2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu = xảy ra khi
\(\frac{\sqrt{2}}{1-x}=\frac{1}{x}\)
\(\Leftrightarrow x=\frac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
\(P=\frac{1}{x}+\frac{2}{1-2x}=2\left(\frac{1}{2x}+\frac{1}{1-2x}\right)\ge2.\frac{4}{2x+1-2x}=8\)
Dau '=' xay ra khi \(x=\frac{1}{4}\)
Vay \(P_{min}=8\)khi \(x=\frac{1}{4}\)
\(B=\frac{2}{1-x}+\frac{1}{x}\)
\(B=\left(\frac{2}{1-x}-1\right)+\left(\frac{1}{x}-1\right)+2\)
\(B=\frac{1+x}{1-x}+\left(\frac{1}{x}-1\right)+2\)
\(B=\left(\frac{1}{1-x}-1\right)+\frac{x}{1-x}+\left(\frac{1}{x}-1\right)+3\)
\(B=\frac{x}{1-x}+\frac{x}{1-x}+\frac{1-x}{x}+3\)
\(B=\frac{2x}{1-x}+\frac{1-x}{x}+3\)
Áp dụng BĐT AM-GM ta có:
\(B\ge2.\sqrt{2}+3\)
Dấu " = " xảy ra <=> \(x=\sqrt{2}-1\)( cái này bạn tự giải rõ )
KL:..............................
\(A=\frac{16x}{3-x}+\frac{3}{x}+1=\frac{16x}{3-x}+\frac{3-x}{x}+2\ge8+2=10\)
Dau '=' xay ra khi \(x=\frac{3}{5}\)
Vay \(A_{min}=10\)khi \(x=\frac{3}{5}\)
A=\(\frac{2}{1-x}+\frac{1}{x} \)
=\(\frac{2}{1-x}-2+\frac{1}{x}-1+3 \)
=\(\frac{2x}{1-x} +\frac{1-x}{x}+3\)
Áp dụng BĐT AM-GM ta có:
A\(\ge\)\(2\sqrt{2}+3\)
Dấu "="xảy ra <=>x=\(\sqrt{2}-1 \)
Theo BĐT Cauchy dạng phân thức
\(A=\dfrac{2}{1-x}+\dfrac{1}{x}\ge\dfrac{\left(\sqrt{2}+1\right)^2}{1-x+x}=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\dfrac{\sqrt{2}}{1-x}=\dfrac{1}{x}\Leftrightarrow x=\sqrt{2}-1\)