Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm min của biểu thức sau
a,biết x-y=3 A=lx-6l+ly+1l
b,x-y=2, B=l2x+1l+l2y+1l
c,2x+y=3,C=l2x+3l+ly+2l+2
1/ \(\left|a\right|=\frac{1}{3}\Rightarrow a=\pm\frac{1}{3};\left|b\right|=0,25=\frac{1}{4}\Rightarrow b=\pm\frac{1}{4}\)
Với a = 1/3, b = 1/4 thì \(A=3\cdot\frac{1}{3}-3\cdot\frac{1}{3}\cdot\frac{1}{4}-\frac{1}{4}=1-\frac{1}{4}-\frac{1}{4}=\frac{1}{2}\)
Với a = -1/3, b = -1/4 thì ....
Với a = -1/3, b = 1/4 thì...
Với a = 1/3,b = -1/4 thì...
2/
a, gõ lại đề
b, Vì \(\left|x+\frac{5}{6}\right|\ge0\Rightarrow B=2-\left|x+\frac{5}{6}\right|\le2\)
Dấu "=" xảy ra khi x + 5/6 = 0 <=> x = -5/6
Vậy Bmax = 2 khi x = -5/6
c, Ta có: \(\left|x\right|+\left|x+2\right|=\left|-x\right|+\left|x+2\right|\ge\left|-x+x+2\right|=2\)
Dấu "=" xảy ra khi \(-x\left(x+2\right)\ge0\Leftrightarrow-2\le x\le0\)
Vậy Cmin = 2 khi -2 <= x <= 0
a,|x-3|+x=7
|x-3| =7-x
Th1: x-3 =7-x Th2: x-3=-7-x
x+x=7+3 x+x=-7+3
2x =10 2x =-4
x =10:2 x =-4:2
x =5 x =-2
a: =>|x-3|=7-x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =7\\\left(x-3-7+x\right)\left(x-3+7-x\right)=0\end{matrix}\right.\Leftrightarrow x=5\)
b: TH1: x<1/2
Pt sẽ là 3-x-(1-2x)=x
=>3-x-1+2x=x
=>x+2=x(loại)
TH2: 1/2<=x<3
Pt sẽ là x=3-x-(2x-1)=3-x-2x+1=-3x+4
=>4x=4
=>x=1(nhận)
TH3: x>=3
Pt sẽ là x-3-2x+1=x
=>x=-x-2
=>2x=-2
=>x=-1(loại)
\(c)\) \(\left|2x-1\right|-2x=3\)
\(\Leftrightarrow\)\(\left|2x-1\right|=2x+3\)
Ta có : \(\left|2x-1\right|\ge0\)
\(\Rightarrow\)\(2x+3\ge0\)\(\Rightarrow\)\(2x\ge-3\)\(\Rightarrow\)\(x\ge\frac{-3}{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=2x+3\\2x-1=-2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-2x=3+1\\2x+2x=-3+1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}0=4\\4x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}0=4\left(loai\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}}\)
Vậy \(x=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(b)\) \(3\left(2x-1\right)-\left|x-5\right|=7\)
\(\Leftrightarrow\)\(3\left(2x-1\right)-7=\left|x-5\right|\)
\(\Leftrightarrow\)\(6x-3-7=\left|x-5\right|\)
\(\Leftrightarrow\)\(\left|x-5\right|=6x-10\)
Ta có : \(\left|x-5\right|\ge0\)
\(\Rightarrow\)\(6x-10\ge0\)\(\Rightarrow\)\(6x\ge10\)\(\Rightarrow\)\(x\ge\frac{5}{3}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=6x-10\\x-5=10-6x\end{cases}\Leftrightarrow\orbr{\begin{cases}6x-x=-5+10\\x+6x=10+5\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=5\\7x=15\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=\frac{15}{7}\left(tm\right)\end{cases}}}\)
Vậy \(x=\frac{15}{7}\)
Chúc bạn học tốt ~
áp dụng tc |a|>=a dấu = xảy ra khi a>=0 tacó
|x-1|>=x-1 dấu = xảy ra khi x-1>=0
|x+3|>=x+3 dấu = xảy ra khi x+3>=0
|2x-5|=|5-2x|>=5-2x dấu=xảy ra khi 5-2x>=0
nên A>=(x-1)+(x+3)+(5-2x)=7
A=7 khix-1>=0;x+3>=0;5-2x>=0
=>x>=1;x>=-3;x<=5/2
=>1<=x<=5/2
Vậy minA=7 khi 1<=x<=5/2
(<= là nhỏ hơn or =;<= là lớn hơn or =)