\(^2\)+ Y\(^2\)+  4XY -14X -6Y+2016    

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

\(5x^2+y^2+4xy-14x-6y+2016=y^2+2y\left(2x-3\right)+5x^2-14x+2016\)

\(=y^2+2y\left(2x-3\right)+\left(4x^2-12x+9\right)+\left(x^2-2x+1\right)+2006\)

\(=y^2+2y\left(2x-3\right)+\left(2x-3\right)^2+\left(x-1\right)^2+2006\)

\(=\left(y+2x-3\right)^2+\left(x-1\right)^2+2006\ge2006\)

Dấu "=" xảy ra khi x=y=1

10 tháng 7 2019

E=(4x^2-4x+1)+(9y^2+6y+1)+(16z^2+8z+1)+1

E=(2x-1)^2+(3y-1)^2+(4z+1)^2+1

Vì (2x-1)^2>=0

      ........>=0

       .........>=0

nên E>= 1.dấu = xảy ra khi x=1/2

  y=1/3

z=1/4

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow (4x^2-4xy+y^2)+y^2+2z^2-2z(2x-y)-6y-10z+34=0\)

\(\Leftrightarrow (2x-y)^2-2z(2x-y)+z^2+y^2+z^2-6y-10z+34=0\)

\(\Leftrightarrow (2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0\)

\(\Leftrightarrow (2x-y-z)^2+(y-3)^2+(z-5)^2=0\)

Do \((2x-y-z)^2; (y-3)^2; (z-5)^2\geq 0, \forall x,y,z\), nên để tổng của chúng bẳng $0$ thì:
\((2x-y-z)^2=(y-3)^2=(z-5)^2=0\Rightarrow \left\{\begin{matrix} y=3\\ z=5\\ x=4\end{matrix}\right.\)

\(\Rightarrow S=(x-4)^{2014}+(y-4)^{2015}+(z-4)^{2016}=0+(-1)^{2015}+1^{2016}=-1+1=0\)

10 tháng 7 2019

\(A=x^6+2x\left(x^2+y\right)+x^2+y^2+26\) 

   \(=x^6+2x^2+2xy+x^2+y^2+26\) 

    \(=x^6+2x^2+\left(x+y\right)^2+26\ge26\forall x;y\) 

Dấu "=" xảy ra<=> \(x=0\) và \(\left(x+y\right)^2=0\Rightarrow y=0\) 

Vậy Amin =26 tại x=y=0

11 tháng 7 2019

B=\(y^2-2xy+3x^2+2y-14x+1949\)

 \(=\left(y^2-2xy+x^2+2y-2x+1\right)+\left(2x^2-12x+18\right)+1930\)

 \(=\left(x-y-1\right)^2+2\left(x-3\right)^2+1930\)

  \(\ge1930\)

MinB=1930 khi \(\hept{\begin{cases}x=y+1\\x=3\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

13 tháng 10 2019

\(S=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{3}{2xy}+4xy\ge\frac{4}{\frac{1}{4}}+\frac{3}{2xy}+384xy-380xy\)

\(\ge16+2\cdot24-380xy=64-380xy\)

+) \(\frac{1}{2}\ge x+y\ge2\sqrt{xy}\Rightarrow\frac{1}{4}\ge4xy\Leftrightarrow\frac{1}{16}\ge xy\)

\(\Rightarrow-380xy\ge380\cdot\frac{1}{16}=23.75\)

\(\Rightarrow S\ge64-23.75=40.25\)

Dấu = xảy ra khi x=y=1/4

14 tháng 10 2019

Tại sao \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\le\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)  ?