Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,2 kiểu gì ẹ
3,
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)
=> \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Làm tương tự rồi nhân lại ta được \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
=> \(xyz\le\frac{1}{8}\).Dấu bằng khi x=y=z=1/2
4.
Ta đi CM: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\) <=> \(a^4+a\left(b+c\right)^3\le\left(a^2+b^2+c^2\right)^2\)
<=> \(a\left(b+c\right)^3\le2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\)
Áp dụng BDT COSI thì
\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}\ge a\left(b+c\right)^3\)
Do đó có dpcm
Làm tương tự rồi cộng lại ta đc bdt ban đầu
Dấu bằng xảy ra khi a=b=c
a) \(B=-3x^2-4x+1\)
\(B=-\left(3x^2+4x-1\right)\)
\(B=-\left[\sqrt{3}x+2.\sqrt{3}x.+\dfrac{2\sqrt{3}}{3}+\left(\dfrac{2\sqrt{3}}{3}\right)^2-\left(\dfrac{2\sqrt{3}}{3}\right)^2-1\right]\)
\(B=-\left(\sqrt{3}x+\dfrac{2\sqrt{3}}{3}\right)^2+\dfrac{7}{3}\le\dfrac{7}{3}\)
\(Max_B=\dfrac{7}{3}\) khi \(x=\dfrac{-2}{3}\)
b) \(C\left(x\right)=x^4-10x^3+26x^2-10x+30\)
\(=\left(x^2\right)^2-2.x^2.5x+\left(5x\right)^2+x^2-2.x.5+5^2+5\)
\(=\left(x^2-5x\right)^2+\left(x-5\right)^2+5\)
\(C\left(y\right)=\left(y+1\right)\left(y+2\right)\left(y+3\right)\left(y+4\right)\)
Nhóm (y+1)(y+4)=t
Nhóm (y+2)(y+3)=t+2
Xong tìm Min được liền
c) Min=2010
d) Viết đề thiếu dấu, có vấn đề, xem lại
e) C= -[(x-y)2+2(x-y).7+72+x2-2.x.2+22-1945]
Xong tìm được Max
'=Bài 3:
\(Y=\left(x^{100}+1+1+1+1+1+1+1+1+1\right)-10x^{10}+1\)
Áp dụng BĐT Cauchy cho 10 số không âm ta có:
\(x^{100}+1+1+1+1+1+1+1+1+1\ge10\sqrt{x^{100}}=10x^{10}\)
\(Y\ge10x^{10}-10x^{10}+1=1\)
\(\Rightarrow maxY=1\)
Dấu "=" xảy ra\(\Leftrightarrow x^{100}=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
a),Ta có \(A=-\left(x^2-4x+4\right)-1=-1-\left(x-2\right)^2\le-1\)
Dấu = xảy ra <=> x=2
b) Ta có \(B=-3\left(x^2-2x+1\right)-2=-3\left(x-1\right)^2-2\le-2\)
dấu = xảy ra <=>x=1
d) Ta có \(D=-\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Ta có \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}}\)
+ hết vào, ta có \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
=>\(-\left(x^2+y^2+z^2-xy-yz-zx\right)\le0\Rightarrow D\le0\)
dấu = xảy ra <=> x=y=z
\(\Leftrightarrow yx^2+2yx+3y=3x^2+10x+20\)
\(\Leftrightarrow\left(y-3\right)x^2+2\left(y-5\right)x+3y-20=0\)
\(\Delta'=\left(y-5\right)^2-\left(y-3\right)\left(3y-20\right)\ge0\)
\(\Leftrightarrow-2y^2+19y-35\ge0\Rightarrow\frac{5}{2}\le y\le7\)
\(\Rightarrow y_{max}=7\) khi \(x=-\frac{1}{2}\)
\(y_{min}=\frac{5}{2}\) khi \(x=-5\)