K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

1.

\(P=x^2+6y+10+y^2-x\)

\(=x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+y^2+2\times y\times3+3^2-3^2+10\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(y+3\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min P = \(\frac{3}{4}\) khi x = \(\frac{1}{2}\) và y = \(-3\)

2.

\(N=x-x^2\)

\(=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)

Vậy Max N = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)

3 tháng 10 2019

a/ \(A=x^2+y^2-2x+6y+12\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow A\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Vậy....

b/ \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)

\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)

\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)

\(\Leftrightarrow B\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)

30 tháng 10 2019

a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Max của 3x - x2 = 9/4 <=> x = 3/2

b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=>  x - 3 = 0 <=> x = 3

Vậy Min của x2 - 6x + 18 = 9 <=> x = 3

30 tháng 10 2019

c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x

Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2

Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2

d) Ta có : x2 + y2 - 2x + 6y + 2019

= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009

= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y=  -3

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

a)

$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$

$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$

$\geq \frac{10091}{5}$

Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$

$\Leftrightarrow x=1; y=\frac{2}{5}$

b)

\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)

\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)

\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$

$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

c)

$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$

$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$

Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$

Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$

$\Leftrightarrow x=1; y=\frac{-1}{3}$

d)

$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$

$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$

$\leq -\frac{40071}{20}$

Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$


30 tháng 8 2017

Ta có : 2x2 - 6x 

\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)

Q\(=\left(\sqrt{2}x-6\right)^2-36\)

Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)

Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)

Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)

31 tháng 5 2016

1) \(C=-\left(x^2-6x+9\right)+5\)

\(\Leftrightarrow C=-\left(x-3\right)^2+5.\)

Vậy GTLN của C là 5 <=> x=3

3) \(E=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)

\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5\)

Vậy GTNN của E bằng 5 <=> x=-2 và y=1

31 tháng 5 2016

Dương: Câu c là GTLN em nhé :)

b. Ta chia ra thành các trường hợp:

- Với \(x\ge3,D=\left(x-3\right)\left(2-x+3\right)=\left(x-3\right)\left(5-x\right)=-x^2+8x-15=1-\left(x-4\right)^2\le1\)

- Với \(x< 3,D=\left(3-x\right)\left(2-3+x\right)=\left(3-x\right)\left(x-1\right)=-x^2+4x-3=1-\left(x-2\right)^2\le1\)

Vậy GTLN của D = 1 khi x = 4 hoặc x = 2.

Chúc em học tốt :))

13 tháng 7 2017

Ta có : A = x2 - x + 2

=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

13 tháng 7 2017

A = x2 - x + 2 = x2 - 2.x.1 + 1+ 1 = ( x+1)2 + 1

Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)

 => ( x+1)2 + 1 \(\ge\)1  khi với mọi x)

Dấu "=" xảy ra khi ( x+1)2 = 0

 => x + 1 = 0 -> x= -1

Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2