Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=4x^2-4x+1+4=\left(2x-1\right)^2+4\)
vì (2x-1)^2 >= 0 => M >= 4
dầu "=" xảy ra <=> 2x-1=0<=>x=1/2
tương tự nhé
2. b B=4(x^2+3/4x+5/4)
Bài 1:
a)M= 4x2-4x + 5
=4x2-4x+1+4
=(2x-1)2+4
Ta thấy:(2x-1)2+4\(\ge\)0+4=4
Dấu = khi x=1/2
Vậy.....
b)N= 9x2 + 5x
\(=9\left(x+\frac{5}{18}\right)^2-\frac{25}{36}\)
Ta thấy:\(9\left(x+\frac{5}{18}\right)^2-\frac{25}{36}\ge0-\frac{25}{36}=-\frac{25}{36}\)
Dấu = khi x=-5/18
Vậy...
Bài 2:
a)A= x2-6x + 12
=x2-6x+9+3
=(x-3)2+3 >0 với mọi x (Đpcm)
b)B= 4x2 -3x +5
\(=4\left(x-\frac{3}{8}\right)^2+\frac{71}{16}>0\)với mọi x (Đpcm)
a)
A=\(x^2+4x+7\)
=\(x^2+4x+4+3\)
=\(\left(x+2\right)^2+3\)
Do (x+2)2\(\ge0\)\(\Rightarrow\left(x+2\right)^2\ge3\)
Dấu ''='' xảy ra khi
\(x+2=0\Rightarrow x=-2\)
Vậy GTNN của A là A=3 tại x=-2
B=\(x^2+4x-7\)
=\(\left(x^2+4x+4\right)-11\)
=\(\left(x+2\right)^2-11\)
Do (x+2)2\(\ge0\Rightarrow\left(x+2\right)^2-11\ge-11\)
Dấu''='' xảy ra khi
\(x+2=0\Rightarrow x=-2\)
Vậy GTNN Của B là B=-11 với x=-2
b) M=\(7-4x-x^2\)
=\(-\left(7+4x+x^2\right)\)
=\(-\left(3+\left(x+2\right)^2\right)\)
=-\(\left(x+2\right)^2-3\)
Do \(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2-3\le-3\)
Dấu = xảy ra khi
\(x+2=0\Rightarrow x=2\)
Vậy GTNN Của M là M min =-3 tại x=2
a\(A=x^2-3x+5\)
\(\Leftrightarrow A=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+5-\dfrac{9}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Min \(A=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}\)
\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)
\(=\left(x-2\right)^2-3\) \(\forall x\in Z\)
\(\Rightarrow A_{min}=-3khix=2\)
\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)
dấu = xảy ra khi x-2=0
=> x=2
Vậy MinA=-3 khi x=2
\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)
dấu = xảy ra khi x+4=0
=> x=-4
Vậy MaxB=9 khi x=-4
\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
dấu = xảy ra khi \(x-\frac{5}{2}=0\)
=> x=\(\frac{5}{2}\)
Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)
\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)
\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
dấu = xảy ra khi \(x+\frac{5}{2}=0\)
=> x\(=-\frac{5}{2}\)
vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất
Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)
bài này dài lăm mk làm giúp 1 câu
A = (x -y)2 + (x+1)2 + (y-1)2 + 1
vậy GTNN = 1
(bn phân h 2x2 = x2 + x2
2y2 = y2+ y2 và 3 =1+1+1
là hiểu cách mk làm , còn nếu k hiểu ra đưa thầy giáo ,thầy sẽ gọi mk là thiên tài)
bạn đó giải rồi nhung nếu cần mình giải kỹ thì nhắn tin mình nha
Bài 1:
a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)
=>đpcm
b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)
=>đpcm
Bài 2:
\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)
Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2
\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)
Vậy x=5 thì B đạt GTLN là -3
A = 25x2 + 3 - 10x
= (5x)2 - 2 . 5x . 1 + 1 + 2
= (5x - 1)2 + 2
(5x - 1)2 lớn hơn hoặc bằng 0
(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0
Vậy A > 0 vs mọi x (đpcm)
B = - 9x2 - 2 + 6x
= - [(3x)2 - 2 . 3x . 1 + 1 + 1]
= - [(3x - 1)2 + 1]
(3x - 1)2 lớn hơn hoặc bằng 0
(3x - 1)2 + 1 lớn hơn hoặc bằng 1
- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng - 1 < 0
Vậy B < 0 với mọi x (đpcm)
***
A = 4x2 - 4x + 3
= (2x)2 - 2 . 2x . 1 + 1 + 2
= (2x - 1)2 + 2
(2x - 1)2 lớn hơn hoặc bằng 0
(2x - 1)2 + 2 lớn hơn hoặc bằng 2
Min A = 2 khi x = 1/2
B = -x2 + 10x - 28
= - [x2 - 2 . x . 5 + 25 + 3]
= - [(x - 5)2 + 3]
(x - 5)2 lớn hơn hoặc bằng 0
(x - 5)2 + 3 lớn hơn hoặc bằng 3
- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3
Vậy Max B = 3 khi x = 5
a) \(A=x-x^2=\frac{1}{4}-\left(\frac{1}{4}-x+x^2\right)=\frac{1}{4}-\left(\frac{1}{2}-x\right)^2\le\frac{1}{4}\forall x\)
GTNN của A = 1/4 khi x = 1/2.
b) \(B=4x-x^2+3=7-\left(4-4x+x^2\right)=7-\left(2-x\right)^2\le7\forall x\)
GTNN của B = 7 khi x = 2.