\(A=x+\sqrt{2-x}\)

Mai phải nộp bài rồi mong đc giúp đỡ sớm ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A = x+√2−xx+2−x

B=  2 - √x2−xx2−x

C= 1+√6x−x2−71+6x−x2−7

1.(A−x)2=2−x=>A2−2Ax+x2=2−x=>x2+x(1−2A)+A2−2=0(A−x)2=2−x=>A2−2Ax+x2=2−x=>x2+x(1−2A)+A2−2=0

Δ=9−4A≥0=>A≤94

\(A=x+ \sqrt{2}-x\)

\(B=2- \sqrt{x^2}-x\)

\(C=1+ \sqrt{6x}-x^2-7\)

12 tháng 7 2018

a)     \(x-2\sqrt{x}=0\)

\(\Leftrightarrow\)\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy....

b)  \(x\sqrt{x}+x-2=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x+2\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\)\(x-1=0\)

\(\Leftrightarrow\)\(x=1\)

Vậy....

12 tháng 7 2018

c)  \(x-2\sqrt{x}-15=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}-5\right)\left(\sqrt{x}+3\right)=0\)

\(\Leftrightarrow\)\(\sqrt{x}-5=0\)   (do \(\sqrt{x}+3>0\))

\(\Leftrightarrow\)\(\sqrt{x}=5\)

\(\Leftrightarrow\)\(x=25\)

Vậy...

d)  \(x-6\sqrt{x}+9=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}-3\right)^2=0\)

\(\Leftrightarrow\)\(\sqrt{x}-3=0\)

\(\Leftrightarrow\)\(\sqrt{x}=3\)

\(\Leftrightarrow\)\(x=9\)

Vậy...

9 tháng 6 2021

b, bạn kiểm tra lại đề nhé 

c, \(\frac{x\sqrt{x}-8+2x-4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{x-4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-4\right)}{x-4}=\sqrt{x}+2\)

2 tháng 10 2020

\(\sqrt{n}-\sqrt{n-1}< \frac{1}{100}\Leftrightarrow\frac{1}{\sqrt{n}-\sqrt{n-1}}>100\Leftrightarrow\sqrt{n}+\sqrt{n-1}>100\left(1\right)\)

Đến đây có thể giải bpt(1) bằng cách chuyển vế \(\sqrt{n-1}>100-\sqrt{n}\), bình phương 2  vế và đưa về \(\sqrt{n}>50,005\). do đó \(n>2500,500025\). Do \(n\in N\)và nhỏ nhất nên n=2501

Cũng có thể ước lượng từ (1) để thấy \(\sqrt{n}\)vào khoảng 50. Với \(n\le2500\)thì \(\sqrt{n}+\sqrt{n-1}\le\sqrt{2500}+\sqrt{2499}< 100\)

Với n=2501 thì \(\sqrt{n}+\sqrt{n-1}=\sqrt{2501}+\sqrt{2500}>100\)

Ta chọn n=2501

20 tháng 8 2017

a) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\orbr{\begin{cases}x\ge3\\x\ge-3\end{cases}}\)

b) \(-x-2\ge0\Leftrightarrow-x\ge2\Leftrightarrow x\ge-2\)

c) \(x^2+2x+1=\left(x+1\right)^2\)

\(\Rightarrow\left(x+1\right)^2\ge0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

13 tháng 3 2020

Quan trọng là dự đoán:D

Dự đoán Max =70 khi (x;y) =(-8;0)

Ta có: \(70-P=\frac{6\left(x+y+8\right)^2+17y^2}{11}\ge0\)

Hoặc một phân tích khác:\(70-P=\frac{\left(6x+23y+48\right)^2+102\left(x+8\right)^2}{253}\ge0\)

13 tháng 3 2020

Bạn sử dụng đẳng thức \(ax^2+bx+c=a\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\)

Và chú ý: \(70-P=70-\left[P-\frac{17}{11}\left\{x^2+2y^2+2xy-\left(24-5x-5y\right)\right\}\right]\)

26 tháng 12 2017

Để tìm GTLN của biểu thức P, bạn phỉa tìm giá trị của biểu thức Q:

Q= \(\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x+1}}\right)\)

Q= \(\dfrac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left|x\right|-1-\left|x\right|+4}{\left(\sqrt{x}-2\right)}\)

Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3}\)

Q= \(\dfrac{2\left(\sqrt{x}+1\right)}{3\sqrt{x}}\) = \(\dfrac{2\sqrt{x}+2}{3\sqrt{x}}\) (Đây là kết quả cuối cùng của x cho

biểu thức Q)

Bây giờ bạn chỉ cần thay x (giá trị của Q) và biểu thức P. Đó là GTLN của biểu thức P. Chúc bạn học tốt !!!