Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\\ A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\\ A=\left(x^2-5x+5-1\right)\left(x^2-5x+5+1\right)\\ A=\left(x^2-5x+5\right)^2-1\ge-1\)
đẳng thức xảy ra khi :
\(x^2-5x+5=0\\ x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}=\dfrac{25}{4}-5\\ \left(x-\dfrac{5}{2}\right)^2=\dfrac{5}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\sqrt{\dfrac{5}{4}}\\x-\dfrac{5}{2}=-\sqrt{\dfrac{5}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
vậy GTNN của A =-1 tại \(\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)
c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow x=-\frac{3}{5}\)
\(B=-2x^2-x+5\)
\(=-2\left(x^2+\dfrac{1}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}-\dfrac{41}{16}\right)\)
\(=-2\left(x+\dfrac{1}{4}\right)^2+\dfrac{41}{8}\le\dfrac{41}{8}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{1}{4}=0\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy Max B là : \(\dfrac{41}{8}\Leftrightarrow x=-\dfrac{1}{4}\)
\(A=-3x^2+x-2\)
\(=-3\left(x^2-\dfrac{1}{3}x+\dfrac{2}{3}\right)\)
\(=-3\left(x^2-2x.\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{23}{36}\right)\)
\(=-3\left[\left(x-\dfrac{1}{6}\right)^2+\dfrac{23}{36}\right]\)
\(=-3\left(x-\dfrac{1}{6}\right)^2-\dfrac{69}{26}\le-\dfrac{69}{26}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{6}=0\Leftrightarrow x=\dfrac{1}{6}\)
Vậy Max A là : \(\dfrac{-69}{26}\Leftrightarrow x=\dfrac{1}{6}\)
\(B=-2x^2-x+5\)
\(=-2\left(x^2-\dfrac{1}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2-2x.\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{41}{16}\right)\)
\(=-2\left[\left(x-\dfrac{1}{4}\right)^2-\dfrac{41}{16}\right]\)
\(=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{41}{8}\le\dfrac{41}{8}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{4}\)
Vậy Max B là : \(\dfrac{41}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(C=-\left(x+1\right)^2-\left(2x-3\right)^2\)
\(=-x^2-2x-1-4x^2+12x-9\)
\(=-5x^2+10x-10\)
\(=-5\left(x^2-2x+1+1\right)\)
\(=-5\left[\left(x-1\right)^2+1\right]\)
\(=-5\left(x-1\right)^2-5\le-5\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Max C là : \(-5\Leftrightarrow x=1\)
\(E=2-5x^2-y^2-4xy+2x\)
\(=-\left(4x^2+4xy+y^2\right)-\left(x^2-2x+1\right)+3\)
\(=-\left(2x+y\right)^2-\left(x-1\right)^2+3\le3\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\)
Vậy Max E là : \(3\Leftrightarrow x=1;y=-2\)
( mik k ghi đề nhé bn)
a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16
=> 8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16
=> 16xy = 16
=> xy = 1
Vì x, y nguyên => x = 1, y = 1 hoặc x = -1, y = -1
mik xin lỗi nha, mik chỉ bt làm câu a
1.
\(D=\frac{2\left|x\right|+3}{3\left|x\right|-1}\)
\(\hept{\begin{cases}\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{cases}}\)
MaxD = Min3|x| -1
\(3\left|x\right|-1\in Z^+\)
\(\Rightarrow3x-1=1\)
\(\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\)
\(\Rightarrow Max_D=\frac{2\left|\frac{2}{3}\right|+3}{3.\left|\frac{2}{3}\right|-1}=\frac{13}{\frac{3}{1}}=\frac{13}{3}\)
2:
Theo đề bài là:
\(\frac{x}{y}=\frac{7}{3};x-y=16\)
\(\frac{\Rightarrow x}{3}=\frac{y}{7};x-y=16\)
Áp dụng tính chất dãy tỉ số = ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{3}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3\\x=-12\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=-4.7\\y=-28\end{cases}}\)
Vậy x = -12
y = -28
a) \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)
\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)
\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\frac{a}{x}=\frac{b}{y}\)
Bài 1 :
a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)
\(\Leftrightarrow9x^2-6x+1-\left(9x^2-4\right)=2014\)
\(\Leftrightarrow-6x=2009\)
\(\Leftrightarrow x=-\dfrac{2009}{6}=-334\dfrac{5}{6}\)
b) \(5x^2+4xy+4y^2+4x+1=0\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)=0\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{4}\end{matrix}\right.\)
Bài 2 :
Ta có :
\(D=\left(4x^2-12xy+9y^2\right)-\left(9y^2-4\right)-\left(1-4x+4x^2\right)+12xy-4x\)
\(=4x^2-12xy+9y^2-9y^2+4-1+4x-4x^2+12xy-4x=3\)
Vậy biểu thức D không phụ thuộc vào các biến x,y
Áp dụng BĐT Cauchy-Schwarz ta có:
\(A=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(2x+3y\right)^2\le13\cdot52\)
\(\Rightarrow\left(2x+3y\right)^2\le676\)
\(\Rightarrow2x+3y\le\sqrt{676}=26\)
Đẳng thức xảy ra khi \(x=-4;y=-6\) hoặc \(x=4;y=6\)
*Lưu ý:\(\left(\left|2x+3y\right|\right)^2=\left|2x+3y\right|^2=\left(2x+3y\right)^2\)