Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|2x+3y\right|\Leftrightarrow A^2=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=13.52=26^2\)
Max A = 26 khi .............
Áp dụng BĐT BCS, ta có:
\(\left(2x+3y\right)^2\le\left(x^2+y^2\right)\left(2^2+3^2\right)\)
\(\left(2x+3y\right)^2\le52.\left(2^2+3^2\right)\)
\(\left(2x+3y\right)^2\le676\)
\(\left|2x+3y\right|\le26\)
Dấu ''='' xảy ra khi ...................... bận
a) \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)
\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)
\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\frac{a}{x}=\frac{b}{y}\)
a) A = ( 3x - 1)2 - 4/ 3x - 1/ + 5
Dat : 3x - 1 = a , ta co :
A = a2 - 4a + 5
A = a2 - 4a + 4 + 1
A = ( a - 2)2 + 1
A = ( 3x - 3)2 + 1
Do : ( 3x - 3)2 ≥ 0 ∀x
⇒ ( 3x - 3)2 + 1 ≥ 1
⇒ AMIN = 1 ⇔ x = 1
\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)
Vậy GTLN của A là -1 khi x = 3
\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)
Vậy GTLN của B là -8 khi x = -1
\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)
Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)
\(D=-x^2-y^2+2x-4y-10\)
\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)
\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)
Vậy GTLN của D là -5 khi x = 1; y = -2
\(a,A=-x^2+6x-10\)
\(=-x^2+6x-9-1\)
\(=-\left(x^2-6x+9\right)-1\)
\(=-\left(x-3\right)^2-1\)
Ta có: \(-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)
=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)
cn lại lm tg tự
=.= hok tốt!!
Theo BTĐ Bu - nhi - a - cốp - xki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với \(a=2\) và \(b=3\)
Ta có: \(\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)\)
Với \(x^2+y^2=52\) thì \(\left(2x+3y\right)^2\le\left(2^2+3^2\right).52\)
\(\Rightarrow\) \(\left(2x+3y\right)^2\le13.13.4\)
\(\Rightarrow\) Giá trị tuyệt đối của \(2x+3y\le26\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\frac{x}{2}=\frac{y}{3}\)
Mặt khác, vì giá trị tuyệt đối của một số luôn không âm nên \(2x+3y\ge0\) hoặc \(2x+3y\le0\)
Do đó: \(x=4\) và \(y=6\) \(\left(t\text{/}m\right)\) ; \(x=-4\) và \(y=-6\) \(\left(t\text{/}m\right)\)
Vậy, \(Max\) \(A=26\) \(\Leftrightarrow\) \(\left(x,y\right)\in\left\{\left(4,6\right);\left(-4,-6\right)\right\}\)
Áp dụng bất đẳng thức bunhiakopski vào e ơi