Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(5-8x-x^2=-\left(x^2+8x+16\right)+16+5\)
=\(21-\left(x+4\right)^2\)<=21
dấu = xảy ra khi x=-4
=> GTLN A=21 khi x=-4
b) \(5-x^2+2x-4y^2-4y\)
=\(-\left(x^2-2x+1\right)-\left(4y^4+4y+1\right)-2+5\)
=\(3-\left(x-1\right)^2-\left(2y-1\right)^2\)<=3
daaus bằng xảy ra khi x=1 và y=1/2
=> GTLN B=3 khi x=1 và y=1/2
a,sửa x8 thành x2
\(A=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+2\right)^2+21\le21\)
Dấu "=" xảy ra khi x+2=0 <=> x=-2
Vậy Amax = 21 khi x = -2
b,\(B=5-x^2+2x-4y^2-4y=-\left(x^2+2x+1\right)-\left(4y^2+4y+1\right)+7=-\left(x+1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy Bmax = 7 khi x=-1,y=-1/2
a: \(A=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21< =21\)
Dấu '=' xảy ra khi x=-4
b: \(B=-\left(x^2-2x+4y^2+4y-5\right)\)
\(=-\left(x^2-2x+1+4y^2+4y+1-7\right)\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu '=' xảy ra khi x=1 và y=-1/2
\(A=5-8x-x^2\)
=\(-\left(x^2+8x+16\right)+21\)
=\(21-\left(x+4\right)^2\)
Với mọi x thì \(\left(x+4\right)^2>=0\)
=>\(21-\left(x+4\right)^2\)=<21
Hay A=<21
Để A=21 thì \(\left(x+4\right)^2=0\)
=>\(x+4=0\)
=>\(x=-4\)
Vậy...
\(B=5-x^2+2x-4y^2-4y\)
=\(-\left(x+1\right)^2-\left(2y+1\right)^2+7\)
Với mọi x thì \(\left(x+1\right)^2>=0;\left(2y+1\right)^2>=0\)
=>\(-\left(x+1\right)^2-\left(2y+1\right)^2+7\)=<7
Hay A=<7
Để A=7 thì \(\left(x+1\right)^2=0\) và \(\left(2y+1\right)^2=\)
=>...
=>\(x=-1\) và \(y=-\dfrac{1}{2}\)
Vậy...
Câu c dễ rồi
Bn đánh giá trong trị là ra
\(A=5-x^2+2x-4y^2-4y=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\\ =-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)
vậy MAX A=7 tại \(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)
\(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
đặt: \(t=x^2+5x\) khi đó:
\(D=\left(t-6\right)\left(t+6\right)\\ D=t^2-36\ge-36\)
đẳng thức xảy ra khi :
\(t=0\\ \Leftrightarrow x^2+5x=0\\ x\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
vậy MAX D=-36 tại x=0 hoặc x=-5
Lời giải:
ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$
$\Leftrightarrow (x-2y)^2+8x=5$.
Đặt $x-2y=a; x=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$
Áp dụng BĐT AM-GM:
$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$
$\Rightarrow a^2+1\geq -2a$
$\Rightarrow a^2+8b+1\geq -2a+8b$
$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$