K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

a) \(-x^2+2x+4=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

\(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-1\right)^2\le0\)\(\Rightarrow-\left(x-1\right)^2+5\le5\)

dấu "=" xảy ra khi chỉ khi x - 1 = 0 => x = 1

Vậy GTLN của biểu thức là 5 khi chỉ khi x = 1

b) \(4x-x^2=-x^2+4x-4+4=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)

ta  có \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2+4\le4\)

dấu "=" xảy ra khi chỉ khi x - 2 = 0 => x = 2

Vậy GTLN của biểu thức là 4 khi chỉ khi x = 2.

c) \(4x-x^2+3=-x^2+4x-4+7=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\)

ta có: \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2+7\le7\)

dấu "=" xảy ra khi chỉ khi x - 2 = 0 => x = 2

Vậy GTLN của biểu thức là 7 khi chỉ khi x = 2.

22 tháng 10 2020

a) -x2 + 2x + 4 = -( x2 - 2x + 1 ) + 5 = -( x - 1 )2 + 5 ≤ 5 ∀ x

Dấu "=" xảy ra khi x = 1

=> GTLN của biểu thức = 5 <=> x = 1

b) 4x - x2 = -( x2 - 4x + 4 ) + 4 = -( x - 2 )2 + 4 ≤ 4 ∀ x

Dấu "=" xảy ra khi x = 2

=> GTLN của biểu thức = 4 <=> x = 2

c) 4x - x2 + 3 = -( x2 - 4x + 4 ) + 7 = -( x - 2 )2 + 7 ≤ 7 ∀ x

Dấu "=" xảy ra khi x = 2

=> GTLN của biểu thức = 7 <=> x = 2

25 tháng 7 2017

Bài 2:

\(a,2x-x^2=-\left(x^2-2x+1\right)+1\)

\(=-\left(x-1\right)^2+1\le1\forall x\)

Vậy GTLN của biểu thức là 1 khi x - 1 =0 => x = 1

\(b,-2x^2-4x+6=-2\left(x^2+2x+1\right)+8\)

\(=-2\left(x+1\right)^2+8\le8\forall x\)

vậy GTLN của bt là 8 khi x + 1 =0 => x = -1

21 tháng 6 2017

\(A=x^2-8x+13=\left(x^2-8x+16\right)-3\ge-3\)Vậy \(Min_A=-3\) khi \(x+4=0\Leftrightarrow x=-4\)

\(B=2x^2+10x+5=2\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{5}{4}=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)Vậy \(Min_B=-\dfrac{5}{4}\) khi \(x+\dfrac{5}{2}=0\Rightarrow=\dfrac{-5}{2}\)

\(C=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\le4\)Vậy \(Max_C=4\) khi \(2-x=0\Rightarrow x=2\)

21 tháng 6 2017

Bài 1:

a, \(A=x^2-8x+13\)

\(A=x^2-4x-4x+16-3\)

\(A=\left(x-4\right)^2-3\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2-3\ge-3\)

Hay \(A\ge-3\) với mọi giá trị của \(x\in R\).

Để \(A=-3\) thì \(\left(x-4\right)^2-3=-3\Rightarrow x=4\)

Vậy......

Câu b tương tự

c, \(4x-x^2\)

\(C=-\left(x^2-4x\right)=-\left(x^2-2x-2x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-4\ge-4\)

\(\Rightarrow-\left[\left(x-2\right)^2-4\right]\le4\)

Hay \(A\le4\) với mọi giá trị của \(x\in R\).

Để \(A=4\) thì \(-\left[\left(x-2\right)^2-4\right]=4\Rightarrow x=2\)

Vậy......

Chúc bạn học tốt!!!

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

12 tháng 7 2018

1.

A=\(4x^2-4x+5\)

A=\(\left(2x\right)^2-4x+1+4\)

A=\(\left(2x-1\right)^2+4\)

\(\left(2x-1\right)^2\)≥0 với mọi x

\(\left(2x-1\right)^2+4\)≥4 với mọi x

Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0

⇔2x-1=0

⇔x=\(\dfrac{1}{2}\)

Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)

B=\(3x^2+6x-1\)

B=3(\(\left(x^2+2x\right)\)-1

B=\(3.\left(x^2+2x-1+1\right)-1\)

B=\(3.\left(x+1\right)^2-3-1\)

B=\(3\left(x-1\right)^2-4\)

\(3.\left(x-1\right)^2\)≥0 với mọi x

\(3\left(x-1\right)^2-4\)≥-4 với mọi x

dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)

⇔x-1=0

⇔x=1

vậy GTNN của B=-4 khi x=1

8 tháng 8 2017

1/ \(M=x^2-2x.15+225-198\)

\(M=\left(x-15\right)^2-198\ge-198\)

\(Min\)\(M=-198\Leftrightarrow x=15\)