K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

\(D=2015-5\left|x-386\right|-5\left|x-389\right|\)

\(D=2015-5\left(\left|x-386\right|+\left|389-x\right|\right)\)

\(D\le2015-5\left|x-386+389-x\right|\)

\(D\le2015-15=2000\)

Dấu "=" xảy ra khi: \(386\le x\le389\)

\(M=2016-\left|x-2015\right|-\left|x-1975\right|-\left|x-1945\right|\)

\(M=2016-\left(\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\right)\)

Đặt: \(L=\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\)

\(L=\left|x-2015\right|+\left|1945-x\right|+\left|x-1975\right|\)

\(L\ge\left|x-2015+1945-x\right|+\left|x-1975\right|\)

\(L\ge70+\left|x-1975\right|\ge70\)

Suy ra: \(M-L\le2016-70=1946\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}1945\le x\le2015\\x=1975\end{cases}}\Leftrightarrow x=1975\)

NM
7 tháng 3 2021

a. ta có \(\left|x-386\right|+\left|x-389\right|=\left|x-386\right|+\left|389-x\right|\ge\left|x-386+389-x\right|=3\)

\(\Rightarrow D\le2015-5\times3=2000\)

b. ta có \(\left|x-30\right|+\left|x-4\right|=\left|30-x\right|+\left|x-4\right|\ge\left|30-x+x-4\right|=26\)

\(\Rightarrow E\le\frac{51350}{26}=1975\)

Ta có : \(\left|x+2\right|+5\ge5\forall x\)

Nên : \(\frac{1}{\left|x+2\right|+5}\le\frac{1}{5}\)

<=> \(\frac{10}{\left|x+2\right|+5}\le\frac{10}{5}=2\)

Vậy Amax = 2 khi x = -2

25 tháng 9 2018

gọi ý:

a,b biến đổi làm sao để:

a) áp dụng:  \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

b) áp dụng:  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

c) Đánh giá:  \(\left|x-2015\right|^{2015}\ge0\)

                     \(\left(y-2016\right)^{2016}\ge0\)

=>  \(C\ge1\)khi  \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)

25 tháng 9 2018

a ) A = | x - 5 | - | x - 7 |

Nhận xét :

| x - 5 | - | x - 7 | < | x - 5 - x + 7 |

=> A < | 2 |

=> A < 2

Dấu "=" xảy ra khi : ( x - 5  ) ( x - 7 ) > 0 

                            TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)

                                 => \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)

                                    => x > 7

                             TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)

                                   => \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)

                                      => x < 5

Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7

b ) B = | 125 - x | + | x - 65 |

Ta có : 

| 125 - x | + | x - 65 | > | 125 - x + x - 65 |

=> B > | 60 |

=> B > 60

Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0

TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)

=> 65 < x < 125

TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)

=> 125 < x < 65 ( vô lí )

Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125

c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1

Nhận xét :

| x - 2015 |2015 > 0 với mọi x

( y - 2016 )2016 > 0 với mọi x

=> | x - 2015 |2015 + ( y - 2016 )2016 > 0 

=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1 

=> C > 1

Dấu "=" xảy ra khi : x - 2015 = 0

                               và y - 2016 = 0

=> x = 2015

      y = 2016

Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016

8 tháng 8 2015

Mình giải ý M thôi nhé, vì ý N mình chưa suy nghĩ ra cách làm
\(M=-2015-\left(2x-x\right)^{20}\)
\(M=-2015-x^{20}\)
Ta có: -2015-x20\(\le\)-2015
Vậy M có giá trị lớn nhất bằng -2015 khi x20=0, hay x=0
tick đúng nha