Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=2015-5\left|x-386\right|-5\left|x-389\right|\)
\(D=2015-5\left(\left|x-386\right|+\left|389-x\right|\right)\)
\(D\le2015-5\left|x-386+389-x\right|\)
\(D\le2015-15=2000\)
Dấu "=" xảy ra khi: \(386\le x\le389\)
\(M=2016-\left|x-2015\right|-\left|x-1975\right|-\left|x-1945\right|\)
\(M=2016-\left(\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\right)\)
Đặt: \(L=\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\)
\(L=\left|x-2015\right|+\left|1945-x\right|+\left|x-1975\right|\)
\(L\ge\left|x-2015+1945-x\right|+\left|x-1975\right|\)
\(L\ge70+\left|x-1975\right|\ge70\)
Suy ra: \(M-L\le2016-70=1946\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}1945\le x\le2015\\x=1975\end{cases}}\Leftrightarrow x=1975\)
a. ta có \(\left|x-386\right|+\left|x-389\right|=\left|x-386\right|+\left|389-x\right|\ge\left|x-386+389-x\right|=3\)
\(\Rightarrow D\le2015-5\times3=2000\)
b. ta có \(\left|x-30\right|+\left|x-4\right|=\left|30-x\right|+\left|x-4\right|\ge\left|30-x+x-4\right|=26\)
\(\Rightarrow E\le\frac{51350}{26}=1975\)
Ta có : \(\left|x+2\right|+5\ge5\forall x\)
Nên : \(\frac{1}{\left|x+2\right|+5}\le\frac{1}{5}\)
<=> \(\frac{10}{\left|x+2\right|+5}\le\frac{10}{5}=2\)
Vậy Amax = 2 khi x = -2
gọi ý:
a,b biến đổi làm sao để:
a) áp dụng: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
b) áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
c) Đánh giá: \(\left|x-2015\right|^{2015}\ge0\)
\(\left(y-2016\right)^{2016}\ge0\)
=> \(C\ge1\)khi \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)
a ) A = | x - 5 | - | x - 7 |
Nhận xét :
| x - 5 | - | x - 7 | < | x - 5 - x + 7 |
=> A < | 2 |
=> A < 2
Dấu "=" xảy ra khi : ( x - 5 ) ( x - 7 ) > 0
TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)
=> \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)
=> x > 7
TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)
=> x < 5
Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7
b ) B = | 125 - x | + | x - 65 |
Ta có :
| 125 - x | + | x - 65 | > | 125 - x + x - 65 |
=> B > | 60 |
=> B > 60
Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0
TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)
=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)
=> 65 < x < 125
TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)
=> 125 < x < 65 ( vô lí )
Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125
c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1
Nhận xét :
| x - 2015 |2015 > 0 với mọi x
( y - 2016 )2016 > 0 với mọi x
=> | x - 2015 |2015 + ( y - 2016 )2016 > 0
=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1
=> C > 1
Dấu "=" xảy ra khi : x - 2015 = 0
và y - 2016 = 0
=> x = 2015
y = 2016
Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016
Mình giải ý M thôi nhé, vì ý N mình chưa suy nghĩ ra cách làm
\(M=-2015-\left(2x-x\right)^{20}\)
\(M=-2015-x^{20}\)
Ta có: -2015-x20\(\le\)-2015
Vậy M có giá trị lớn nhất bằng -2015 khi x20=0, hay x=0
tick đúng nha