K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

lim\(\frac{n^2+2n-3}{n\left(n+1\right)}\)=lim\(\frac{\frac{n^2}{n^2}+\frac{2n}{n^2}-\frac{3}{n^2}}{\frac{n^2}{n^2}+\frac{1}{n}}\)

=\(\frac{lim1+lin\frac{n}{2}-lim\frac{3}{n^2}}{lim1+lim\frac{1}{n}}=1\)

23 tháng 3 2016

Khi \(n\rightarrow\infty\) ta có \(\frac{n^3}{n^2+3}=\frac{1}{\frac{1}{n}+\frac{3}{n^2}}\rightarrow\infty;\) \(\frac{2n^2}{2n+1}=\frac{2}{\frac{2}{n}+\frac{1}{n^2}}\rightarrow\infty\) và như vậy ở đây ta gặp vô định dạng \(\left(\infty-\infty\right)\). Do vậy để tính giới hạn ta cần biến đổi sơ bộ như sau

\(a_n=\frac{n^3-6n^2}{\left(n^2+3\right)\left(2n+1\right)}=\frac{1-\frac{6}{n}}{\left(1+\frac{3}{n^2}\right)\left(2+\frac{1}{n}\right)}\) \(\Rightarrow\lim\limits a_n=\frac{1}{1.2}=\frac{1}{2}\)

23 tháng 3 2016

a) Cả tử số và mẫu số của \(\frac{7n^2-3n+12}{n^2+2n+2}\) đều dẫn đến \(\infty\) nên không thể trả lời ngay biểu thức đó  tiến đến giới hạn nào (dạng vô định \(\left(\frac{\infty}{\infty}\right)\)). Tuy nhiên sau khi chia cả tử số và mẫu số cho \(n^2\) :

\(\frac{7n^2-3n+12}{n^2+2n+2}=\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}\)

Ta thấy ngay tử số gần đến 7 và mẫu số gần đến 1 (vì \(\lim\limits\frac{1}{n^p}=0,p\ge1\)

Điều đó cho phép ta áp dụng công thức và thu được kết quả \(\lim\limits\frac{7n^2-3n+12}{n^2+2n+2}=\lim\limits\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}=7\)

23 tháng 3 2016

b) Áp dụng công thức "Nếu tồn tại \(\lim\limits a^n,k\in\)N* thì tồn tại \(\lim\limits\left(a_n\right)^k=\left(\lim\limits a_n\right)^k\)"

ta có : 

\(\lim\limits a_n=\left[\lim\limits\left(\frac{3n^2+n-2}{4n^2+2n+7}\right)\right]^3\)

Mặt khác do \(\lim\limits\frac{3n^2+n-2}{4n^2+2n+7}=\lim\limits\frac{3+\frac{1}{n}-\frac{2}{n^2}}{4+\frac{2}{n}+\frac{7}{n^2}}=\frac{3}{4}\)

nên \(\lim\limits a_n=\left(\frac{3}{4}\right)^3=\frac{27}{64}\)

 

AH
Akai Haruma
Giáo viên
11 tháng 1 2020

Bạn muốn tìm giới hạn nhưng lại không chỉ rõ $n$ chạy đến đâu?

Điển hình như câu 1:

$n\to 0$ thì giới hạn là $3$

$n\to \pm \infty$ thì giới hạn là $\pm \infty$

Bạn phải ghi rõ đề ra chứ?

15 tháng 8 2016

lim\(\frac{2n^3+3n^2-n+5}{\left(n^2+n+1\right)\left(n^2+2\right)}\)

= lim\(\frac{\frac{2}{n}+\frac{3}{n^2}-\frac{1}{n^3}+\frac{5}{n^4}}{\left(\frac{1}{n^2}+\frac{1}{n^3}+\frac{1}{^{n^4}}\right)\left(\frac{1}{n^2}+\frac{2}{n^4}\right)}=0\)

NV
19 tháng 2 2020

a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)

b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)

c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)

d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)

NV
19 tháng 2 2020

e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)

f/ Ta có công thức:

\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)

\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)

g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)

h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)

NV
1 tháng 3 2020

\(=lim\frac{2.2^{5n}+3}{9.3^{5n}+1}=lim\frac{2.\left(\frac{2}{3}\right)^{5n}+3\left(\frac{1}{3}\right)^{5n}}{9+\left(\frac{1}{3}\right)^{5n}}=\frac{0}{9}=0\)

\(b=lim\frac{\left(-\frac{1}{3}\right)^n+4}{-1\left(-\frac{1}{3}\right)^n-2}=\frac{4}{-2}=-2\)

\(c=1+lim\frac{-n}{n^2+\sqrt{n^4+n}}=1+lim\frac{-\frac{1}{n}}{1+\sqrt{1+\frac{1}{n^3}}}=1+\frac{0}{2}=1\)

\(-2\le2cosn^2\le2\Rightarrow\frac{-2}{n^2+1}\le\frac{2cosn^2}{n^2+1}\le\frac{2}{n^2+1}\)

\(lim\frac{-2}{n^2+1}=lim\frac{2}{n^2+1}=0\Rightarrow lim\frac{2cosn^2}{n^2+1}=0\)

\(d=lim\left[n\left(\sqrt{1-\frac{2}{n^2}}-1+1-\sqrt[3]{1+\frac{2}{n^2}}\right)\right]\)

\(=lim\left[n\left(\frac{-\frac{2}{n^2}}{\sqrt{1-\frac{2}{n^2}}+1}-\frac{\frac{2}{n^2}}{\sqrt[3]{\left(1+\frac{2}{n^2}\right)^2}+\sqrt[3]{1+\frac{2}{n^2}}+1}\right)\right]\)

\(=lim\left(\frac{-\frac{2}{n}}{\sqrt{1-\frac{2}{n^2}}+1}-\frac{\frac{2}{n}}{\sqrt[3]{\left(1+\frac{2}{n^2}\right)^2}+\sqrt[3]{1+\frac{2}{n^2}}+1}\right)=\frac{0}{2}-\frac{0}{1+1+1}=0\)

NV
23 tháng 2 2020

\(A=lim\frac{\sqrt{n+2}+\sqrt{n+1}}{1}=lim\left[n\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\right]=+\infty.2=+\infty\)

\(B=lim\frac{8^3.64^n-9.27^n}{4^4.64^n+5^3.25^n}=\frac{8^3-9.\left(\frac{27}{64}\right)^n}{4^4+5^3\left(\frac{25}{64}\right)^n}=\frac{8^3}{4^4}=2\)

\(1;-\frac{1}{2};\frac{1}{4}...\) là dãy cấp số nhân lùi vô hạn có \(u_1=1\)\(q=-\frac{1}{2}\)

Do \(\left|q\right|< 1\) nên theo công thức tổng cấp số nhân:

\(S_n=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

22 tháng 2 2020

câu tính tổng S mk làm đc oy nhé k cần lm câu đó nữa đâu

NV
1 tháng 3 2020

1. Bạn ghi lại đề, mẫu số ko rõ

2. \(=lim\left[-8n^6\left(1-\frac{4}{n^2}\right)^3\right]=-\infty.1=-\infty\)

3. Dãy số là CSC với \(\left\{{}\begin{matrix}u_1=-1\\d=3\end{matrix}\right.\) \(\Rightarrow u_n=-1+\left(n-1\right)3=3n-4\)

\(\Rightarrow lim\frac{3n-4}{5n+2020}=lim\frac{3-\frac{4}{n}}{5+\frac{2020}{n}}=\frac{3}{5}\)

4.

\(u_{n+1}=\frac{1}{2}u_n+\frac{3}{2}\Rightarrow u_{n+1}-3=\frac{1}{2}\left(u_n-3\right)\)

Đặt \(v_n=u_n-3\Rightarrow\left\{{}\begin{matrix}v_1=-2\\v_{n+1}=\frac{1}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội \(\frac{1}{2}\Rightarrow v_n=-2.\frac{1}{2^{n-1}}\Rightarrow u_n=v_n+3=-\frac{1}{2^{n-2}}+3\)

\(\Rightarrow lim\left(u_n\right)=lim\left[-\frac{1}{2^{n-2}}+3\right]=3\)

5.

\(u_{n+1}=u_n+\frac{1}{2^n}\Rightarrow u_{n+1}+\frac{2}{2^{n+1}}=u_n+\frac{2}{2^n}\)

Đặt \(v_n=u_n+\frac{2}{2^n}\Rightarrow\left\{{}\begin{matrix}v_1=3\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=v_n=...=v_1=3\Rightarrow u_n=3-\frac{2}{2^n}\)

\(\Rightarrow u_{n-2}=3-\frac{2}{2^{n-2}}\Rightarrow lim\left(u_{n-2}\right)=lim\left(3-\frac{2}{2^{n-2}}\right)=3\)

Tính \(u_{n-2}\) hay \(u_n-2\) nhỉ? Ko dịch nổi nên đoán đại