Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=4y^2-12y+15\)
\(=\left(2y\right)^2-2.2y.3+3^2+6\)
\(=\left(2y-3\right)^2+6\)
Ta có : \(\left(2y-3\right)^2\ge0\)
\(\Rightarrow\left(2y-3\right)^2+6\ge6\)
Dấu " = " xảy ra khi và chỉ khi : \(2y-3=0\)
\(\Leftrightarrow2y=3\)
\(\Leftrightarrow y=\frac{3}{2}\)
Vậy \(Min_B=6\) khi và chỉ khi \(y=\frac{3}{2}\)
Ta có : C = (x + 1).(x + 2).(x + 3).(x + 4)
=> C = [(x + 1).(x + 4)].[(x + 2).(x + 3)]
=> C = [x2 + 5x + 4] . [x2 + 5x + 6]
Đặt t = x2 + 5x + 5
Khi đó t - 1 = x2 + 5x + 4 , t + 1 = x2 + 5x + 6
Nên C = (t - 1)(t + 1) = t2 - 1 = (x2 + 5x + 5)2 - 1
Mà (x2 + 5x + 5)2 \(\ge0\forall x\)
Do đó (x2 + 5x + 5)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của C là :
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
a, (x+2)(x+3)= x2+5x+6=(x2+2.x.5/2+25/4-1/4)=(x+5/2)2+1/4 >=1/4 <=> x+5/2=0 =>x=-5/2
a/ B = 4y2 -12y + 15 = (2y)2 - 2 . 3 . 2y + 32 + 6 = (2y - 3)2 + 6 \(\ge\)6
Đẳng thức xảy ra khi: \(2y-3=0\Rightarrow2y=3\Rightarrow y=1,5\)
Vậy giá trị nhỏ nhất của B là 6 khi x = 1,5
b/ C = x2 - x + 1 = x2 - 2 . 0,5x + (0,5)2 + 0,75 = (x - 0,5)2 + 0,75 \(\ge\)0,75
Đẳng thức xảy ra khi: x - 0,5 = 0 => x = 0,5
Vậy giá trị nhỏ nhất của C là 0,75 khi x = 0,5