K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

A = x2 -2xy + 2y2+ 2x - 10y -5

= x2 - 2xy + y2 + y2 + 2x - 2y - 8y -5

= [(x2 - 2xy + y2) + 2 ( x - y) + 1]2 + (y2 - 8y + 16) - 22     

= [ (x - y)2 + 2(x - y) + 1]2 + (y - 4)2  - 22

= (x - y + 1)2 + ( y - 4)2 - 22  -22

=> Min của A = -22 khi {y−4=0x−y+1=0{y−4=0x−y+1=0 => {y=4x−3=0{y=4x−3=0 => {y=4x=3{y=4x=3

Vậy Min của A = 2016 khi x = 3 và y = 4.

21 tháng 7 2018

MinA=-22 khi \(\hept{\begin{cases}\left(y-4\right)^2=0\\\left(x-y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\x=3\end{cases}}}\)

21 tháng 9 2018

\(A=2x^2+9y^2-6xy-6x-12y+2004\)

\(A=\left(3y\right)^2-2\cdot3y\cdot2+2^2+2x^2-6x+2000\)

\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2\right)+1997,75\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1997,75\)

\(A\ge1997,75\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}}\)

Vậy,.........

21 tháng 9 2018

Sửa cho Bonking ( bắt đầu dòng 3 )

\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)+2000\)

\(A=\left(3y-2\right)^2+2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+2000\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}+2000\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1995,5\)

\(A\ge1995,5\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)

Vậy,.........

1 tháng 10 2017

Ta có : \(x^2+y^2-2x+4y+1\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)

\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)

Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)

Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)

Vậy \(A_{min}=-4\) khi x = 1 và y = -2