K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

ta có : \(A=x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-1\right)^2+\left(y-2\right)^2+1\)

ta có : \(\left(x-1\right)^2\ge0\) với mọi \(x\)\(\left(y-2\right)^2\ge0\) với mọi \(y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của \(A\) là 1 khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

vậy giá trị nhỏ nhất của \(A\) là 1 khi \(x=1;y=2\)

16 tháng 8 2017

A = \(x^2-2x+y^2-4y+6=x^2-2x+1+y^2-4y+4+1=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy GTNN của A là 1 khi x = 1 và y = 2

16 tháng 7 2015

 

A=x2+y2+2x-4y+5

 =x2+2x+1+y2-4y+4

=(x+1)2+(y-2)2

A=0

=>(x+1)2+(y-2)2=0

<=>x+1=0 và y-2=0

<=>x=-1 và y=2

27 tháng 7 2017

\(P=\frac{x^2-2x+1989}{x^2}\)

\(\Leftrightarrow Px^2=x^2-2x+1989\)

\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)

\(\Delta=4-4\left(1-P\right)1989\ge0\)

\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1989\)

Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989

23 tháng 9 2017

\(Q=2x^2-6x\)

\(Q=2.(x^2 - 2.\dfrac{3}{2}.x+\dfrac{9}{4}\text{)}-\dfrac{9}{2} \)

\(Q=2.(x-\dfrac{3}{2})^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)

\(\Rightarrow Min_A=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\) .

\(M=x^2+y^2-x+6y+10\)

\(M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow Min_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3.\)

26 tháng 11 2015

25

cho mìn ****

 

NV
28 tháng 1 2019

Áp dụng \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

Ta có \(P=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\)

\(\Rightarrow P=1-3x^2y^2\ge1-3\dfrac{\left(x^2+y^2\right)^2}{4}=\dfrac{1}{4}\)

\(\Rightarrow P_{min}=\dfrac{1}{4}\) khi \(x^2=y^2=\dfrac{1}{2}\)