Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : M = x2 + y2 - x + 6y + 10
= (x2 - x + \(\frac{1}{4}\)) + (y2 + 6y + 9) + \(\frac{3}{4}\)
= (x - \(\frac{1}{2}\) )2 + (y + 3)2 + \(\frac{3}{4}\)
Mà ; (x - \(\frac{1}{2}\) )2 và (y + 3)2 \(\ge0\forall x\)
Nên : (x - \(\frac{1}{2}\) )2 + (y + 3)2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Vậy Mmin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\) và y = -3
Ta có : \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-9-\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\) nê \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của M là 3/4 . Dấu bằng xảy ra khi x = 1/2 và y = -3
Để D có giá trị nhỏ nhất thì x^2 ;4y^2 ;2xy; 6y; 10(x-y) phải có giá trị nhỏ nhất
Mà x^2 >0 hoặc x^2=0 ( với mọi x)
4y^2 >0 hoặc 4y^2 =0 (với mọi y)
=> x^2 =0 suy ra x =0 (4)
4y^2 =0 suy ra y =0 (5)
ta có x= 0 ;y=0 => 6y =0 (1)
2xy = 0 (2)
10(x-y)=0 (3)
Từ (1);(2);(3);(4);(5) => D= 0+0-0-0-0+32
=> D= 32
k minh nha
Ta có:
\(D=x^2+4y^2-2xy-6y-10\left(x-y\right)+32\)
\(=x^2+4y^2-2xy+4y-12x+32\)
\(=\left(x^2+y^2+36-2xy-12x+12y\right)+\left(3y^2-8y+\frac{16}{3}\right)-\frac{28}{3}\)
\(=\left(x-y-6\right)^2+\left(\sqrt{3}y-\frac{4}{\sqrt{3}}\right)^2-\frac{28}{3}\ge-\frac{28}{3}\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\\sqrt{3}y-\frac{4}{\sqrt{3}}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)
Vậy \(D_{min}=-\frac{28}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)
mk giải lun nha :
b)\(x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\left(y^2.2-2...\right)\)
nhận xét :\(\frac{x-1^2}{2}>=0\)(do bình phương của 1 số lun k âm)
\(\left(y-3^{ }\right)^2>=0\)(do bình phương của 1 số lun k âm )
\(=>\frac{x-1^2}{2}+\left(y-3\right)^2>=0\)
\(=>\frac{x-1^2}{2}+\left(y-3\right)^2+\frac{3}{4}>=\frac{3}{4}\)
hay B \(>=\frac{3}{4}\)DẤU = XẢY RA <=>X=1/2,Y=3
VẬY B MIN =3/4 <=>X=1/2,Y=3
MK CHỈ LÀM ĐƯỢC CÂU B THUI
a)Đặt \(A=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) (vì \(\left(x-\frac{3}{2}\right)^2\ge0\) với mọi x)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)
Vậy Min A= \(-\frac{9}{2}\) tại x= \(\frac{3}{2}\)
b) Đặt \(B=x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\) với mọi x, y)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2};y=-3\)
Vậy Min B= \(\frac{3}{4}\) tại x= \(\frac{1}{2}\); y= -3.
\(M=x^2-2x\cdot\frac{1}{2}+\frac{1}{4}+y^2+6y+9+\frac{3}{4}.\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y\)
GTNN của M = 3/4 khi x = 1/2 ; y = -3.
a) \(Q=2\left(x^2-3x\right)\)
\(Q=2\left(x^2-2\times x\times\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu bằng <=> \(x=\frac{3}{2}\)