Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(\forall x\) ta có :
\(B=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)
\(\Leftrightarrow B=\left|x-2010\right|+\left|2011-x\right|+\left|x-2012\right|\)
\(\Leftrightarrow B\ge\left|x-2010\right|+\left|2011-x+x-2012\right|\)
\(\Leftrightarrow B\ge\left|x-2010\right|+1\)
Lại có : \(\left|x-2010\right|\ge0\)
\(\Leftrightarrow\left|x-2010\right|+1\ge1\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left|x-2010\right|=0\)
\(\Leftrightarrow x=2010\)
Vậy \(A_{Min}=1\Leftrightarrow x=2010\)
Ta có
|x−2010|\(\ge\)0 với mọi x
=>2012-|x−2010|\(\ge\)2012 với mọi x
=>C\(\ge\)\(\dfrac{1}{2012}\)với mọi x
Dấu bằng xảy ra <=>|x−2010|=0
<=>x-2012=0
<=>x=2012
Vậy Cmin=\(\dfrac{1}{2012}\)<=>x=2012
A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011
≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011
= |y-2010|+|x-2011|+2012≥2012
Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0
<=> {y=2010x=2011{y=2010x=2011
Vay GTNN cua A=2012 khi {x=2011;y=2010
x = 2013 => x + 1 = 2014
Ta có:\(B=x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...+2014x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-\left(x+1\right)x^{2010}+...+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-x^{2011}-x^{2010}+...+x^2+x-1\)
\(=x-1\)
\(=2013-1\)
\(=2012\)
\(X=2013\Rightarrow2014=X+1\Rightarrow B=X^{2013}-\left(X+1\right)\times X^{2012}+...+\left(X+1\right)\times X-1\)\(X-1\)
\(\Rightarrow B=X^{2013}-X^{2013}-X^{2012}+...+X^2+X-1\)
\(\Rightarrow B=X-1\)\(=2013-1=2012\)
\(x^2+4x+2013=x^2+4x+4+2009=\left(x+2\right)^2+2009\ge2009\)
\(\Rightarrow P\le\frac{2012}{2009}\)
\(\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{3}{a^{2012}+2011}=1+\frac{3}{a^{2012}+2011}\\ Qmax\Leftrightarrow a^{2012}min\Leftrightarrow a=0\)
Thay vào là ra
Ta thấy 2014=2013+1=x+1
B=x2013-2014x2012+2014x2011-2014x2011-2014x2010+.....-2014x2+2014x
B=x2013-(2013+1).x2012+(2013+1).x2011-(2013+1).x2011-(2013+1).x2010+....-(2013+1).x2+(2013+1).x
B=x2013-(x+1).x2012+(x+1).x2011-(x+1).x2011-(x+1).x2010+......-(x+1).x2+(x+1).x
B=x2013-x2013-x2012+x2012+x2011-x2012-x2011-x2011-x2010+....-x3-x2+x2+x
B=.....................(tự triệt tiêu tiếp)
ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)
Áp dụng bđt chưa dấu giá trị tuyệt đó ts có
\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)
mà \(\left|x-2011\right|\ge0\)
Cộng hết vào => B\(\ge2\)
dấu = xảy ra <=> x=2011