|x−2010|+|x−2011|+|x−2012|

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)

Áp dụng bđt chưa dấu giá trị tuyệt đó ts có

\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)

mà \(\left|x-2011\right|\ge0\)

Cộng hết vào => B\(\ge2\)

dấu = xảy ra <=> x=2011

17 tháng 2 2019

đk : \(\left|x-2010\right|\ne2012\)

\(B=\frac{2011}{2012-\left|x-2010\right|}\)

có : \(2011>0\)

để B đạt gtnn thì 2012 - |x - 2010| lớn nhất

mà |x - 2010| > 0

=> 2012 - |x - 2010| = 1

=> |x - 2010| = 2011  

=> x - 2010 = 2011 hoặc x - 2010 = -2011

=> x = 4021 hoặc x = -1

23 tháng 12 2017

Với \(\forall x\) ta có :

\(B=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)

\(\Leftrightarrow B=\left|x-2010\right|+\left|2011-x\right|+\left|x-2012\right|\)

\(\Leftrightarrow B\ge\left|x-2010\right|+\left|2011-x+x-2012\right|\)

\(\Leftrightarrow B\ge\left|x-2010\right|+1\)

Lại có : \(\left|x-2010\right|\ge0\)

\(\Leftrightarrow\left|x-2010\right|+1\ge1\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left|x-2010\right|=0\)

\(\Leftrightarrow x=2010\)

Vậy \(A_{Min}=1\Leftrightarrow x=2010\)

23 tháng 12 2017

Mà t nhớ bài sai CTV đc phép xóa thì phải :v

25 tháng 12 2017

Ta có

|x−2010|\(\ge\)0 với mọi x

=>2012-|x−2010|\(\ge\)2012 với mọi x

=>C\(\ge\)\(\dfrac{1}{2012}\)với mọi x

Dấu bằng xảy ra <=>|x−2010|=0

<=>x-2012=0

<=>x=2012

Vậy Cmin=\(\dfrac{1}{2012}\)<=>x=2012

18 tháng 12 2022

A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011

≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011

= |y-2010|+|x-2011|+2012≥2012

Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0

<=> {y=2010x=2011{y=2010x=2011

Vay GTNN cua A=2012 khi {x=2011;y=2010

28 tháng 1 2018

x = 2013 => x + 1 = 2014

Ta có:\(B=x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...+2014x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-\left(x+1\right)x^{2010}+...+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-x^{2011}-x^{2010}+...+x^2+x-1\)

\(=x-1\)

\(=2013-1\)

\(=2012\)

28 tháng 1 2018

\(X=2013\Rightarrow2014=X+1\Rightarrow B=X^{2013}-\left(X+1\right)\times X^{2012}+...+\left(X+1\right)\times X-1\)\(X-1\)

\(\Rightarrow B=X^{2013}-X^{2013}-X^{2012}+...+X^2+X-1\)

\(\Rightarrow B=X-1\)\(=2013-1=2012\)

4 tháng 4 2017

\(x^2+4x+2013=x^2+4x+4+2009=\left(x+2\right)^2+2009\ge2009\)

\(\Rightarrow P\le\frac{2012}{2009}\)

 \(\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{3}{a^{2012}+2011}=1+\frac{3}{a^{2012}+2011}\\ Qmax\Leftrightarrow a^{2012}min\Leftrightarrow a=0\)

Thay vào là ra

4 tháng 4 2017

P lớn nhất bằng 2013

Q lớn nhất bằng 2013/2011 bạn nhé!~

30 tháng 3 2016

Ta thấy 2014=2013+1=x+1

B=x2013-2014x2012+2014x2011-2014x2011-2014x2010+.....-2014x2+2014x

B=x2013-(2013+1).x2012+(2013+1).x2011-(2013+1).x2011-(2013+1).x2010+....-(2013+1).x2+(2013+1).x

B=x2013-(x+1).x2012+(x+1).x2011-(x+1).x2011-(x+1).x2010+......-(x+1).x2+(x+1).x

B=x2013-x2013-x2012+x2012+x2011-x2012-x2011-x2011-x2010+....-x3-x2+x2+x

B=.....................(tự triệt tiêu tiếp)

30 tháng 3 2016

k đi mình làm cho