Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)
\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
hay x<=4
b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)
=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)
=>12x+2+3x+9>=30x+18+48-20x
=>15x+11>=10x+66
=>5x>=55
hay x>=11
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
Ta có :
\(P=\dfrac{12x^2-6x+4}{x^2+1}\)
\(=\dfrac{3x^2+3+9x^2-6x+1}{x^2+1}\)
\(=\dfrac{3\left(x^2+1\right)+\left(3x-1\right)^2}{x^2+1}\)
\(=3+\dfrac{\left(3x-1\right)^2}{x^2+1}\)
Do : \(\left\{{}\begin{matrix}\left(3x-1\right)^2\ge0\\x^2+1>0\end{matrix}\right.\Rightarrow3+\dfrac{\left(3x-1\right)^2}{x^2+1}\ge3\)
Vậy GTNN của P là 3 . Dấu \("="\) xảy ra khi \(\left(3x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)
1,\(A=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" khi \(x=\frac{3}{2}\)
2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)
\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1)
*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)
*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)
\(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)
\(\Leftrightarrow B\ge1\)
Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)
\(\Leftrightarrow-\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)
Thấy 1 < 2 nên BMin = 1<=> x = 2
Vậy ....
A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1
Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0
Nên:A\(\ge\) -1
B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\) -3
\(P=\frac{12x^2-6x+4}{x^2+1}=\frac{\left(9x^2-6x+1\right)+3\left(x^2+1\right)}{x^2+1}=\frac{\left(3x-1\right)^2}{x^2+1}+3\ge3\forall x\)
Dấu "=" xảy ra khi: \(3x-1=0\Rightarrow x=\frac{1}{3}\)
Vậy \(P_{min}=3\Leftrightarrow x=\frac{1}{3}\)
a)
\(A=2x^2-6x\)
\(=\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{3\sqrt{2}}{2}+\frac{9}{2}-\frac{9}{2}\)
\(=\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)
Vì \(\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x\sqrt{2}-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2};\forall x\)
Hay \(A\ge\frac{-9}{2};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x\sqrt{2}-\frac{3\sqrt{2}}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy MIN \(A=\frac{-9}{2}\)\(\Leftrightarrow x=\frac{3}{2}\)
( xin lỗi bro mình thích làm căn )
Các bài khác làm nốt đi
a) \(2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Vậy GTLN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
b)
1. \(x-x^2=-\left(x^2-x\right)=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy GTNN của biểu thức là \(\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
2. \(2x-2x^2-5=-2\left(x^2-x+\frac{5}{2}\right)\)
\(=-2\left(x^2-x+\frac{1}{4}+\frac{9}{4}\right)=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le\frac{-9}{2}\)
Vậy GTNN của biểu thức là \(\frac{-9}{2}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(B=\dfrac{2x^2-12x+25}{x^2-6x+12}=\dfrac{2\left(x^2-6x+12\right)+1}{x^2-6x+12}=2+\dfrac{1}{x^2-6x+9+4}=2+\dfrac{1}{\left(x-3\right)^2+4}\le2+\dfrac{1}{4}=\dfrac{9}{4}\)
Không có min nha bạn . Chỉ có max thôi
Dấu = xảy ra khi x=3