K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

B=x^2-3x+21

B=(x^2-3x+9)+12

B=(x-3)^2+12≥12

Dấu "=" xảy ra khi x-3=0=>x=3

Vậy tại x=3 thì B có GTNN

*WARNING:ko biết đúng hay sai

31 tháng 12 2018

B = x^2 - 3x + 21

B = (x^2 -3x + 9) + 12

B = [ ( x - 3 )^2 ] + 12

Ta có :

( x - 3 )^2 ≥ 0 ∀ x

⇔ ( x - 3 )^2 + 12 ≥ 12 ∀ x

Dấu '' = '' xảy ra khi :

x - 3 = 0

⇔ x = 3

Vậy B có giá trị nhỏ nhất tại x = 3

19 tháng 4 2022

\(B=x^2+3x-1=x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{13}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\)

\(B_{min}=\dfrac{-13}{4}\Leftrightarrow x=\dfrac{-3}{2}\)

28 tháng 10 2016

A=x2+10x+35=x2+10x+25+10=x2+2*x*5+52+10=(x+5)2+10

Ta có: (x+5)2>=0(với mọi x)

=> (x+5)2+10>=10(với mọi x)

hay A>=10(với mọi x)

Do đó, GTNN của A là 10 khi: (x+5)2=0

x+5=0

x=0-5

x=-5

Vậy GTNN của A là 10 tại x=-5

28 tháng 10 2016

thanks bạn ạ

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1

16 tháng 3 2020

\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\)

Ta thấy \(5x^2\ge0\forall x\)

\(\Rightarrow5x^2+5\ge5\)

\(\Rightarrow B\ge5\)

Dấu "=" xảy ra khi \(x=0\)

...

16 tháng 3 2020

\(B=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\ge5\)

Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0

GTNN của B là 5 khi x = 0

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

5 tháng 8 2019

Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4

Ta luôn có: (x - 5/2)2 \(\ge\)\(\forall\)x

=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x

Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2

Vậy Min A = -21/4 tại  x = 5/2

Ta có: B = -x + 3x + 1 = -(x - 3x  + 9/4) + 13/4 = -(x - 3/2)2 + 13/4

Ta luôn có: -(x - 3/2)2 \(\le\)\(\forall\)x

=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x  = 3/2

Vậy Max B = 13/4 tại x = 3/2

(xem lại đề)

10 tháng 10 2019

\(x^2+10x+2\)

\(=x^2+10x+25-23\)

\(=\left(x+5\right)^2-23\ge-23\)

(Dấu "="\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\))

\(x^2+10x+2\)

\(=x^2+10x+25-23\)

\(=\left(x+5\right)^2-23\ge-23\)

Dấu ''='' \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

9 tháng 10 2016

\(x^2-2x+y^2+4y+8=x^2-2x+1+y^2+4y+4+3=\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)

\(MinE=3\Leftrightarrow x=1;y=-2\)

9 tháng 10 2016

mà MinE là j z bạn