Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan^2a=\frac{sin^2a}{cos^2a}=\frac{1-cos^2a}{cos^2a}=\frac{1-\left(\frac{3}{5}\right)^2}{\left(\frac{3}{5}\right)^2}=\frac{16}{9}\Rightarrow\left[{}\begin{matrix}tana=\frac{4}{3}\\tana=-\frac{4}{3}\end{matrix}\right.\)
Với \(tana=\frac{4}{3}\Rightarrow cota=\frac{3}{4}\)
\(A=\frac{\frac{4}{3}+\frac{3}{4}+1}{\frac{4}{3}-\frac{3}{4}+1}=\frac{37}{19}\)
Với \(tana=-\frac{4}{3}\Rightarrow cota=-\frac{3}{4}\)
\(A=\frac{-\frac{4}{3}-\frac{3}{4}+1}{-\frac{4}{3}+\frac{3}{4}+1}=-\frac{13}{5}\)
- sin 45 = cos 45 => sin 45 - cos 45 =0 => A =0
- sin 45 = cos 45 ; tan 45 = cot 45 => \(\frac{sina-tana}{cota-cosa}=\frac{sina-tana}{tana-sina}=-1\)
cộng hai vế ta được: 2tan\(\alpha\)=\(\frac{31}{12}\)\(\Rightarrow\)tan\(\alpha\)=\(\frac{31}{24}\)
=> cot\(\alpha\)=\(\frac{17}{24}\)
mik nham r . hai cau nay rieng biet nha , ko lien quan j toi nhau
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a\left(\frac{cos^2a}{sin^2a}\right)=cos^2a.cot^2a\)
\(\frac{1+cosa}{sina}=\frac{sina\left(1+cosa\right)}{sin^2a}=\frac{sina\left(1+cosa\right)}{1-cos^2a}=\frac{sina\left(1+cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\frac{sina}{1-cosa}\)
ta có tan a.cot a=1
=>tan a= 1:cot a
thay vào pt ta được 1 : cot a+cot a=3
=> cot a=2,62
ta có \(cos\alpha=\frac{cos\alpha}{sin\alpha}=\frac{131}{50}\)
<=>\(\frac{cosa}{131}=\frac{sina}{50}\)
BP 2 vế :
\(\frac{cos^2a}{131^2}=\frac{sin^2a}{50^2}=\frac{cos^2a+sin^2a}{131^2+50^2}=\frac{1}{19661}\)
=>cos2a=0,873=>cos a=0,934
=>sin2a=0,127=>sin a = 0,356
===>A=sin a.cos a=0,356.0,934=0,332504
Tích nha bạn
\(\left(\tan\alpha;\cot\alpha\right)=\left(a;b\right)\) cho gọn, trong đó \(b=\frac{1}{a}\)
\(B=a+b+\frac{4}{a+b}-\frac{3}{a+b}\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}-\frac{3}{a+\frac{1}{a}}\ge4-\frac{3}{2}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(\tan\alpha=\cot\alpha=1\)