Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(D=|x+\frac{1}{2}|+|y-\frac{1}{5}|+|x+\frac{1}{4}|\)
\(=\left(|x+\frac{1}{2}|+|x+\frac{1}{4}|\right)+|y-\frac{1}{5}|\)
Đặt \(F=|x+\frac{1}{2}|+|x+\frac{1}{4}|\)
\(=|x+\frac{1}{2}|+|-x-\frac{1}{4}|\ge|x+\frac{1}{2}-x-\frac{1}{4}|\)
Hay \(F\ge\frac{1}{4}\)
Dấu "=" xảy ra\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}\ge0\\-x-\frac{1}{4}\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+\frac{1}{2}< 0\\-x-\frac{1}{4}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{2}\\x\le\frac{-1}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{-1}{2}\\x>\frac{-1}{4}\end{cases}}\)( loại )
\(\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{4}\)
Đặt \(E=|y-\frac{1}{5}|\)
Vì \(|y-\frac{1}{5}|\ge0;\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow|y-\frac{1}{5}|=0\)
\(\Leftrightarrow y=\frac{1}{5}\)
\(\Rightarrow F+E\ge\frac{1}{4}\)
Hay \(D\ge\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)
Vậy MIN \(D=\frac{1}{4}\)\(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)
Chết mik nhầm câu d) phải là \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Dù sao mik cx cảm ơn bn[ OC ].Không khóc vì em
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
Ta có:
(x+1/3)^2 >=0 với mọi x
|y+5| >=0 với mọi y
=>GTNN A=(x+1/3)^2+|y+5| -2/5 >= -2/5
dấu = xảy ra khi và chỉ khi:
x+1/3=0 =>x=-1/3
y+5=0 => y=-5
KL: