K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

a)ta có:/y-1/>=0 với mọi y

           /y-1/+7>=7 với mọi y

dấu "=" xảy ra khi và chỉ khi:y-1=0=> y=1

vậy MIN của biểu thức là 7 tại y=1

10 tháng 7 2016

a,,A=|x-3|+1

Ta thấy:\(\left|x-3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+1\ge0+1=1\)

\(\Rightarrow A\ge1\).Dấu = khi x=3

Vậy....

b)B=|6-2x|-5

Ta thấy:\(\left|6-2x\right|\ge0\)

\(\Rightarrow\left|6-2x\right|-5\ge0-5=-5\)

\(\Rightarrow B\ge-5\).Dấu = khi x=3

Vậy...

c) C=3-|x+1|

Ta thấy:\(-\left|x+1\right|\le0\)

\(\Rightarrow3-\left|x+1\right|\le3-0=3\)

\(\Rightarrow C\le3\).Dấu = khi x=-1

e) E= -(x+1)^2 -|2-y|+11

Ta thấy:\(\hept{\begin{cases}-\left(x+1\right)^2\\-\left|2-y\right|\end{cases}\le}0\)

\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)

\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le0+11=11\)

\(\Rightarrow E\le11\).Dấu = khi x=-1 y=2

Vậy... 

f)F= (x-1)^2+|2y+2|-3

Ta thấy:\(\hept{\begin{cases}\left(x-1\right)^2\\\left|2y+2\right|\end{cases}}\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge0-3=-3\)

\(\Rightarrow F\ge-3\).Dấu = khi x=1  y=-1

Vậy...

14 tháng 7 2016

a) để A nhỏ nhất thì |x+3/5| =2/3

ta có 2 trường hợp:

TH1: x+3/5=2/3 => x=1/15

TH2:x+3/5= -2/3 => x= -19/15

b, để B nhỏ nhất thì |3x-2|=4

ta có 2 trường hợp:

TH1:3x-2=4 =>3x=6 => x=2

TH2:3x-2= -4 => 3x= -2(ko có giá trị thỏa mãn)

14 tháng 7 2016

cảm ơn bạn nhé !

25 tháng 2 2019

Câu 1 : a ) Ta có : \(A=\left|x-32\right|\ge0\) 

\(\Rightarrow GTNN\) của \(A=0\)( khi đó x = 32 )

            b) Để B đạt GTNN thì \(\left|x+2\right|\) đạt GTNN

Ta có : \(\left|x+2\right|\ge0\Leftrightarrow GTNN\) của \(\left|x+\right|=0\)( khi đo x = -2 )

\(\Rightarrow GTNN\) của B = 25

Câu 2 : a) Để A đạt GTNN thì \(\left|x\right|\) đạt GTNN

Mà \(\left|x\right|\ge0\Leftrightarrow GTNN\) của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì \(\left|x+5\right|\) đạt GTNN

Mà \(\left|x+5\right|\ge0\Leftrightarrow GTNN\)  của \(\left|x+5\right|=0\)( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì \(\left(n-1\right)^2\) đạt GTNN

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow GTNN\)  của\(\left(n-1\right)^2=0\)( khi đó n = 1)

Vậy GTNN của C bằng  25

27 tháng 2 2019

Câu 1 : a ) Ta có : A=|x32|0 

GTNN của A=0( khi đó x = 32 )

            b) Để B đạt GTNN thì |x+2| đạt GTNN

Ta có : |x+2|0GTNN của |x+|=0( khi đo x = -2 )

GTNN của B = 25

Câu 2 : a) Để A đạt GTNN thì |x| đạt GTNN

Mà |x|0GTNN của |x| = 0

Vậy GTNN của A bằng 2

            b) Để B đạt GTNN thì |x+5| đạt GTNN

Mà |x+5|0GTNN  của |x+5|=0( khi đó x = -5 )

Vậy GTNN của B bằng  21

               c) Để B đạt GTNN thì (n1)2 đạt GTNN

Mà (x1)20GTNN  của(n1)2=0( khi đó n = 1)

Vậy GTNN của C bằng  25

Bài 1 :

a)x.(x+3)=0

=>  x=0 hoặc x+3=0

ta có: x+3=0

          x   = -3

Vậy x=0 hoặc x=-3

b) (x-2). (5-x) = 0

=> x-2=0 hoặc 5-x =0

TH1   

x-2=0

x   =2

TH2

5-x  =0

  x   =5

Vậy x=5 hoặc x=2

Bài 2

a) Để A có GTNN thì | x: 9| + |y-5| < 0

=> A=1890 +|x:9|+ | y-5| < 1890

Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0

28 tháng 2 2019

ta có |x+19|+|y-5|+1980 >1980

<=>|x+19|+|y-5|>0

dấu"="chỉ xảy ra <=>|x+19|=0vs|y-5|=0<=>x+19=0vsy-5=0

                                   <=>x=-19,y=5

                                   

11 tháng 1 2017

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

11 tháng 1 2017

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks