\(\left|x-\dfrac{3}{4}\right|+1\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

Giải:

a) Có: \(A=\left|x-\dfrac{3}{4}\right|+1\)

\(\left|x-\dfrac{3}{4}\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|+1\ge1\forall x\)

Hay \(A\ge1\forall x\)

Vậy giá trị nhỏ nhất của A là 1.

b) \(B=5-\left|\dfrac{2}{3}-x\right|\)

\(\left|\dfrac{2}{3}-x\right|\ge0\forall x\)

\(5-\left|\dfrac{2}{3}-x\right|\le5\)

Hay \(B\le5\forall x\)

Vậy giá trị lớn nhất của B là 5.

Chúc bạn học tốt!!!

31 tháng 8 2017

Đặt:

\(HIEUCANCER=\left|x-\dfrac{3}{4}\right|+1\)

\(\left|x-\dfrac{3}{4}\right|\ge0\forall x\in R\)

\(HIEUCANCER=\left|x-\dfrac{3}{4}\right|+1\ge1\)

Dấu "=" xảy ra khi:

\(x=\dfrac{3}{4}\)

Đặt:

\(HIEUBD=5-\left|\dfrac{2}{3}-x\right|\)

\(\left|\dfrac{2}{3}-x\right|\ge0\forall x\in R\)

\(HIEUBD=5-\left|\dfrac{2}{3}-x\right|\le5\)

Dấu "=" xảy ra khi:

\(x=\dfrac{2}{3}\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

1 tháng 8 2019

Tìm GTNN

Ta có: A = |x - 1| + |x - 4|

=>  A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3

=> A \(\ge\)3

Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0

<=> \(1\le x\le4\)

Vậy Min A = 3 <=> \(1\le x\le4\)

Tìm GTLN

Ta có: -|x + 2| \(\le\)\(\forall\)x

hay A  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max A = 0 <=> x = -2

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

5 tháng 6 2016

Đáy lớn là

26 + 8 = 34 M

chIỀU CAO là

26 - 6 = 20 m

Diện tích thửa ruộng là

{ 34 + 26 } x 20 : 2 = 800 m2

Đáp số 800 m2

5 tháng 6 2016

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

8 tháng 7 2016

a. A = 5.(x - 2)2 + 1

Ta có: (x - 2)\(\ge\)0 => 5.(x - 2)2 \(\ge\)0 => 5.(x - 2)2 + 1 \(\ge\)1

Do đó A có GTNN là 1

<=> x - 2 = 0

<=> x = 2

b. B = 4 - (1/2 - x)2

Ta có: (1/2 - x)2 \(\ge\)0

=> 4 - (1/2 - x)2 \(\le\)4

Do đó B có GTLN là 4

<=> 1/2 - x = 0

<=> x = 1/2

17 tháng 6 2016

a)Ta thấy:

\(-\left|\frac{1}{3}x+2\right|\le0\)

\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)

\(\Rightarrow B\le5\)

Dấu "=" xảy ra khi x=-6

Vậy MaxB=5<=>x=-6

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:

\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)

Vậy MinC=2<=>x=6 hoặc -10