Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=x^2-4xy+5y^2+10x-22y+28\)
\(R=x^2-\left(4xy+10x\right)+\left(4y^2-20y+25\right)+\left(y^2-2y+1\right)+2\)
\(R=x^2-2x\left(2y-5\right)+\left(2y-5\right)^2+\left(y-1\right)^2+2\)
\(R=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Vậy: \(Min_R=2\Leftrightarrow x=-3;y=1\)
R= x2 - 4xy+ 5y2 + 10x - 22y + 28
= x2 - 2x(2y-5) + (2y-5)2 - (2y-5)2 +5y2 -22y+28
= (x-2y+5)2 - 4y2 +20y-25 + 5y2 -22y +28
= (x-2y+5)2 + y2 -2y+3
=(x-2y+5)2 +(y-1)2 +2
Vì (x-2y+5)2 ≥0 với mọi x,y
(y-1)2 ≥ 0 với mọi y
Suy ra (x-2y+5)2 + (y-1)2+2 ≥ 2
Dấu''='' xảy ra <=> x-2y+5=0 và y-1=0
<=> y=1; x=-3
Vậy R min= 2 ⇔ y=1; x=3
Bài làm:
Ta có: \(x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy Min = 2 khi x = -3 và y = 1
Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)
\(\Rightarrow A=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Vì \(\left(x-2y+5\right)^2\ge0\forall x,y\); \(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2+5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+3=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(minA=2\)\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
A = ( x2 + 4y2 + 25 - 4xy + 10x - 20y ) + ( y2 - 2y + 1 ) + 2
A = ( x - y + 5 )2 + ( y - 1 )2 + 2
A ≥ 2
Dấu "=" xảy ra ⇔ \(\left\{{}\begin{matrix}\text{x - y + 5 = 0}\\y-1=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
a) A = x^2 -6x+11
=x^2 -6x+9+2
=(x^2 -6x+9)+2
=(x-3)^2 +2
do (x-3)^2 ≥ 0 Với mọi x
=> (x-3)^2 +2 ≥ 2
=> A ≥ 2
Min A=2 khi x=3
b) B= -x^2 +6x-11
=-x^2 +6x-9-2
=-(x^2-6x+9)-2
=-(x-3)^2-2
=> Max B =-2
khi x=3
c) C= x^2 -4xy+5y^2 +10x-22y+28
=(x^2 -4xy+4y^2 )+(10x-20y) +25 +(y^2 -2y+1) +2
=(x-2y)^2 +10(x-2y)+25+(y-1)^2+2
=(x-2y+5)^2 +(y-1)^2+2
=> Min C=2 khi y=1 x=-3
le khanh duong
(x-3)2+(x+1)2
=x2-6x+9+x2 +2x+1
=2x2-4x+10
=(2x2-4x+2)+8
=2(x2-2x+1)+8
=2(x-1)2+8
=> GTNN =8 khi x=1
C = ( x2 - 4xy + 4y2 ) + 10.(x -2y) + ( y2 -2y + 1) + 27
= ( x-2y)2 + 2.5.(x-2y) + 25 + (y-1)2 + 2
= ( x-2y + 5 )2 + (y-1)2 + 2 \(\ge2\)vì \(\left(x-2y+5\right)^2\ge0\forall x,y\) và \(\left(y-1\right)^2\ge0\forall y\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy Min C = 2 \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y-5\right)^2+\left(y-1\right)^2+2\ge2\)
Đẳng thức khó tìm quá huhu
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x^2 - 4xy + 4y^2) + (10x - 20y) + (y^2 - 2y) + 28
= (x - 2y)^2 + 10(x - 2y) + 25 + (y^2 - 2y + 1) + 2
= (x - 2y)^2 + 2.(x - 2y).5 + 5^2 + (y - 1)^2 + 2
= (x - 2y + 5)^2 + (y - 1)2 + 2
Vì (x−2y+5)^2≥0∀x;y; (y−1)^2≥0∀y nên (x−2y+5)^2+(y−1)^2+2≥2∀x;y
hay C≥2∀x;y
Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y-5\\y=1\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
\(R=x^2-4xy+5y^2+10x-22y+28\)
\(R=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(R=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\left(y^2-2y+1\right)+2\)
\(R=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow R\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy ...