K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

Bài 1

a, Ta có

A = x2 + 6x + 13

⇒ A = (x2 + 6x + 9) + 4

⇒ A = (x + 3)2 + 4

Vì (x + 3)2 ≥ 0 với ∀ x ∈ R

⇒ (x + 3)2 + 4 ≥ 4 > 0 với ∀ x ∈ R

⇒ A > 0 với ∀ x ∈ R (đpcm)

b, B = 2x2 + 4y2 - 4x + 4xy + 13

⇒ B = (2x2 - 4x + 2) + (4y2 + 4xy + 1) + 8

⇒ B = 2 (x2 - 2x + 1) + (2y + 1)2 + 8

⇒ B = 2 (x - 1)2 + (2y + 1)2 + 8

\(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\text{ với ∀ x ∈ R}\\\left(2y+1\right)^2\ge0\text{ với ∀ y ∈ R}\end{matrix}\right.\)

⇒ 2 (x - 1)2 + (2y + 1)2 ≥ 0 với ∀ x, y ∈ R

⇒ 2 (x - 1)2 + (2y + 1)2 + 8 ≥ 8 với ∀ x, y ∈ R

⇒ B ≥ 8 với ∀ x, y ∈ R

Dấu " = " xảy ra

⇒ 2 (x - 1)2 + (2y + 1)2 = 0

\(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\text{ với ∀ x ∈ R}\\\left(2y+1\right)^2\ge0\text{ với ∀ y ∈ R}\end{matrix}\right.\)

nên : Để 2 (x - 1)2 + (2y + 1)2 = 0

\(\left\{{}\begin{matrix}2\left(x-1\right)^2=0\text{ }\\\left(2y+1\right)^2=0\text{ }\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0+1\\2y=0-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\2y=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của B là 8 tại \(\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)

Chúc bạn học tốt!!!

5 tháng 11 2018

cảm ơn bn nhiều nha

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

6 tháng 5 2018

vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)

dấu = xảy ra khi \(a=b=c=1\)

vậy min của P là 8 khi a=b=c=1

Bạn có thể tham khảo tại:

https://olm.vn/hoi-dap/question/922685.html

Chúc bạn học giỏi

22 tháng 8 2020

A = x2 - 4x + 1 

A = ( x2 - 4x + 4 ) - 3

A = ( x - 2 )2 - 3

( x - 2 )2 ≥ 0 ∀ x => ( x - 2 )2 - 3 ≥ -3

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MinA = -3 <=> x = 2

B = 4x2 + 4x + 11

B = 4( x2 + x + 1/4 ) + 10

B = 4( x + 1/2 )2 + 10

4( x + 1/2 )2 ≥ 0 ∀ x => 4( x + 1/2 )2 + 10 ≥ 10

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 )

C = [ ( x - 1 )( x + 6 ) ][ ( x + 3 )( x + 2 ) ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 62 = ( x2 + 5x )2 - 36

( x2 + 5x )2 ≥ 0 ∀ x => ( x2 + 5x )2 - 36 ≥ -36

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

=> MinC = -36 <=> x = 0 hoặc x = -5

D = 5 - 8x - x2

D = -( x2 + 8x + 16 ) + 21

D = -( x + 4 )2 + 21

-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 21 ≤ 21

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxD = 21 <=> x = -4

E = 4x - x2 + 1

E = -( x2 - 4x + 4 ) + 5

E = -( x - 2 )2 + 5

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 5 ≤ 5 

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxE = 5 <=> x = 2

23 tháng 9 2017

. Ai đó giúp tôi đi mà ._.

28 tháng 9 2017

bài khó quá bạn ạ