Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số \(A\)xác định được \(\Leftrightarrow6-x\ne0\Rightarrow x\ne6\)
Vì \(x\in Z\Rightarrow6-x\in Z\)
Để \(A_{max}\Leftrightarrow6-x\)nhỏ nhất \(\left(6-x>0\right)\)
\(\Rightarrow6-x=1\Rightarrow x=6-1=5\Rightarrow A=\frac{2}{6-5}=\frac{2}{1}=2\)
Vậy \(A_{max}\)tại \(x=5\)
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
Ta có
\(C=\frac{12-3x}{4-x}+\frac{10}{4-x}=3+\frac{10}{4-x}\)
C lớn nhất <=> \(\frac{10}{4-x}\) lớn nhất <=> 4 - x bé nhất >0
Mà x nguyên
=>x=1
Thay vào ta có \(C=\frac{22-3.1}{4-1}=\frac{19}{4}\)
Vậy MAX(C)=19/4 khi x=1
C=\(\frac{22-3x}{4-x}=3+\frac{10}{4-x}\)để C lớn nhất thì \(\frac{10}{4-x}\) lớn nhất
mà x nguyên=> 4-x=1=> x=3
vậy GTLN của C=13 khi x=1
Điều kiện : \(x\ne4\)
Biểu diễn : \(C=\frac{22-3x}{4-x}=\frac{3\left(4-x\right)+10}{4-x}=\frac{10}{4-x}+3\)
Ta có C đạt giá trị lớn nhất \(\Leftrightarrow\frac{10}{4-x}\)đạt giá trị lớn nhất \(\Leftrightarrow4-x\)đạt giá trị nhỏ nhất
Đến đây ta xét các trường hợp :
1. Với \(x>4\Rightarrow4-x< 0\Rightarrow\frac{10}{4-x}< 0\)
2. Với \(0\le x\le3\) \(\Rightarrow\frac{5}{2}\le\frac{10}{4-x}\le10\)
3. Với \(x< 0\), xét \(f\left(x\right)=4-x\) có giá trị càng tăng khi x càng giảm (x < 0) , do đó f(x) nhỏ nhất tại x = -1
\(\Rightarrow\frac{10}{4-x}=2\)
So sánh các trường hợp , được \(MaxC=13\Leftrightarrow x=3\)
Để A đạt giá trị nhỏ nhất thì 4-x phải nhỏ nhất
\(\Rightarrow\frac{5}{4-x}\le5\Rightarrow4-x\)đạt giá trị lớn nhất là 5
\(\Rightarrow5:\left(4-x\right)=5\)
\(\Rightarrow4-x=1\Rightarrow x=3\)
vậy x=3 để A đạt giá trị lớn nhất
đây là cách của mk ;khi bạn làm bài sửa ngôn từ cho hay tí là ok