\(M=\frac{2x+1}{x^2+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\frac{2x+1+x^2+2-x^2-2}{x^2+2}=\frac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}\)

\(M=\frac{\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\)

M lớn nhất khi \(\frac{\left(x-1\right)^2}{x^2+2}\)nhỏ nhất 

Vì \(\left(x-1\right)^2\ge0\forall x\) và \(\left(x^2+2\right)\ge0\forall x\)nên \(\frac{\left(x+1\right)^2}{x^2+2}\)nhỏ nhất khi \(\left(x+1\right)^2=0\)

Dấu ''='' xảy ra khi \(x-1=0\)  \(\Leftrightarrow\)\(x=1\)

Vậy \(M_{max}=1\)khi \(x=1\)

12 tháng 8 2018

câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)

\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)

\(\Rightarrow\dfrac{1}{16}\le M\le61\)

\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)

câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)

\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)

\(\Rightarrow3\le M\le7\)

\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)

câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)

\(\Rightarrow M_{min}=-6\) khi \(x=2\)

12 tháng 8 2018

4) điều kiện xác định \(-6\le x\le10\)

ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)

áp dụng bunhiacopxki dạng căn ta có :

\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)

\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)

\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)

\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)

\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự

14 tháng 1 2021

\(F=\frac{x}{x^2+2}\)

với x > 0, áp dụng bđt Cauchy ta có :

\(x^2+2\ge2\sqrt{x^2+2}=2x\sqrt{2}\)

=> \(\frac{1}{x^2+2}\le\frac{1}{2x\sqrt{2}}\)

=> \(\frac{x}{x^2+2}\le\frac{1}{2\sqrt{2}}\)( x > 0 nên khi nhân vào cả hai vế bđt giữ chiều )

hay \(F\le\frac{1}{2\sqrt{2}}\)

đẳng thức xảy ra khi \(x=\sqrt{2}\)

vậy maxF = ​\(\frac{1}{2\sqrt{2}}\)​, đạt được khi ​\(x=\sqrt{2}\)

14 tháng 1 2021

nhầm dòng 3 xíu :v 

\(x^2+2\ge2\sqrt{2x^2}=2x\sqrt{2}\)

12 tháng 5 2016

Gọi T là tập giá trị của A. Điều kiện để \(m\in T\) là hệ phương trình sau có nghiệm \(\left(x,y\right)\) với \(x\ne0;y\ne0\)

\(\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{1}{x^3}+\frac{1}{y^3}=m\end{cases}\) \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^3y^3}=m\end{cases}\)

                                              \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{xy\left(x+y\right)}{x^3y^3}=m\end{cases}\)

                                               \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{\left(x+y\right)^2}{x^2y^2}=m\end{cases}\)  (1)

Đặt \(S=x+y\)

       \(P=xy;\left(S^2\ge4P\right)\) . Hệ (1) trở thành \(\begin{cases}SP=S^2-3P\\\frac{S^2}{P^2}=m\end{cases}\) (2)

Hệ (1) có nghiệm \(\left(x,y\right)\) với \(x\ne0;y\ne0\) khi và chỉ khi hệ (2) có nghiệm (S,P) thỏa mãn \(S^2\ge4P;P\ne0\) do

\(S^2-3P=x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) với mọi  \(x\ne0;y\ne0\)  nên SP > 0 \(\Rightarrow\frac{S}{P}>0\)

Như thế :

* Nếu \(m\le0\) thì hệ (2) vô nghiệm

* Nếu m > 0 thì

\(\left(2\right)\Leftrightarrow\begin{cases}SP=S^2-3P\\S=\sqrt{m}P\end{cases}\)\(\Leftrightarrow\begin{cases}\sqrt{m}P^2=mP^2-3P\\S=\sqrt{m}P\end{cases}\)

      \(\Leftrightarrow\begin{cases}\left(m-\sqrt{m}\right)P^2-3P=0\\S=\sqrt{m}P\end{cases}\) do \(P\ne0\)  \(\Leftrightarrow\begin{cases}\left(m-\sqrt{m}\right)P=3\\S=\sqrt{m}P\end{cases}\) (3)

Hệ (3) có nghiệm khi và chỉ khi \(m-\sqrt{m}\ne0\Leftrightarrow m\ne1\), lúc này từ (3) ta có :

\(P=\frac{3}{m-\sqrt{m}}\Rightarrow S=\frac{3}{\sqrt{m}-1}\)

Hệ (2) có nghiệm (S;P) thỏa mãn \(S^2\ge4;P\ne0\) khi và chỉ khi:

\(0< m\ne1\) và \(\frac{9}{\left(\sqrt{m}-1\right)^2}\ge\frac{12}{\sqrt{m}\left(\sqrt{m}-1\right)}\)

\(\Leftrightarrow0< m\ne1\) và \(3\sqrt{m}\ge4\left(\sqrt{m}-1\right)\)

\(\Leftrightarrow0< m\ne1\) và \(\sqrt{m}\le4\Leftrightarrow m\in\) (0;16] \ \(\left\{1\right\}\)

Tập giá trị của A là  (0;16] \ \(\left\{1\right\}\) suy ra max A = 16 ( không tồn tại min A)

 

 

 
30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

NV
12 tháng 2 2020

\(A=\frac{1}{6}\left(6-2x\right)\left(12-3y\right)\left(2x+3y\right)\)

\(A\le\frac{1}{6}\left(\frac{6-2x+12-3y+2x+3y}{3}\right)^3=36\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

\(A=\frac{\frac{ab}{\sqrt{2}}\sqrt{2\left(c-2\right)}+\frac{bc}{\sqrt{3}}\sqrt{3\left(a-3\right)}+\frac{ca}{2}\sqrt{4\left(b-4\right)}}{abc}\)

\(A\le\frac{\frac{abc}{2\sqrt{2}}+\frac{abc}{2\sqrt{3}}+\frac{abc}{4}}{abc}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)