K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)

-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)

\(\Rightarrow x=-1;y=2\)

-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:

\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)

14 tháng 2 2018

Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)

Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )

\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được : 

\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)

21 tháng 7 2019

\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)

Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)

nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)

thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)

\(\Rightarrow x-1=0\text{ và }y+3=0\)

\(\Rightarrow x=1\text{ và }y=-3\)

\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)

Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)

hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)

\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)

\(\Rightarrow x^2=9\text{ và }6y=2\)

\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)

Câu c) làm tương tự nha

22 tháng 1 2017

Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)

Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)

\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Thay x=2 và y=-1 vào biểu thức P ta có:

\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)

Vậy ................

22 tháng 1 2017

\(P=2.2^3-15+2016=2017\)

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

27 tháng 5 2020

a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)

\(< =>2x+2=12x-3\)

\(< =>10x=5\)\(< =>x=\frac{1}{2}\)

khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)

\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)

xong nhe 

27 tháng 5 2020

Cái này thì EZ mà sư phụ : ]

a) 2(x+1) = 3(4x-1)

=> 2x + 2 = 12x - 3

=> 2x - 12x = -3 - 2

=> -10x = -5

=> x = 1/2

Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)

=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(x-5=0\Rightarrow x=5\)

\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
20 tháng 1 2017

có 4 trường hợp xảy ra

trường hợp thứ nhất bạn thay cả x và y lớn hơn 0

trường hợp thứ 2 bạn thay cả x và y bé hơn 0

trường hợp thứ 3  bạn thay x lớn hơn 0 y bé hơn 0

trường hợp thứ 4  bạn thay y lớn hơn 0 x bé hơn 0