Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thu gọn các đơn thức sau rồi tìm hệ số và bậc của nó :
a) \(\left(-2xy^3\right)\left(\dfrac{1}{3}xy\right)^2\)
\(=\left(-2.\dfrac{1}{9}\right)\left(x.x^2\right)\left(y^3.y^2\right)\)
\(=\dfrac{-2}{9}x^3y^5\)
Hệ số : \(\dfrac{-2}{9}\)
Bậc : 8
b) \(\left(-18x^2y^2\right)\left(\dfrac{1}{6}ax^2y^3\right)\)
\(=\left(-18.\dfrac{1}{6}a\right)\left(x^2.x^2\right)\left(y^2.y^3\right)\)
\(=-3ax^4y^5\)
Hệ số : \(-3a\)
Bậc : 9
c) \(3x^2yz\left(-xy\right)\left(\dfrac{-2}{3}xy^2z^3\right)\)
\(=\left(3.\dfrac{-2}{3}\right).\left(x^2.-x.x\right)\left(y.y.y^2\right).z^3\)
\(=-2x^4y^4x^3\)
Hệ số : -2
Bậc : 11
d) \(\left(-3x^2y\right)^2xz^2.\dfrac{1}{2}xy^3\)
\(=\left(-3.\dfrac{1}{2}\right)\left(x^4.x.x\right)\left(y^2.y^3\right).z^2\)
\(=\dfrac{-3}{2}x^6y^5z^2\)
Hệ số : \(\dfrac{-3}{2}\)
Bậc : 13
e) \(-3x^2yz\left(-5xy^3z^2\right)\)
\(=\left(-3.-5\right)\left(x^2.x\right)\left(y.y^3\right)\left(z.z^2\right)\)
\(=-15x^3y^4z^3\)
Hệ số : -15
Biến : 10
1. Đơn thức nào sau đây đồng dạng vs đơn thức -3xy2:
A. -3x2y B. (-3xy)y C. -3(xy)2 D. -3xy
2. Đơn thức \(-\frac{1}{3}y^2z^49x^3y\) có bậc là:
A. 6 B. 8 C. 10 D. 12
3. Bậc của đa thức Q = x3 - 7x4y + xy3 - 11 là:
A. 7 B. 6 C. 5 D. 4
4. Giá trị x = 2 là nghiệm của đa thức:
A. f(x) = 2 + x B. f(x) = x2 - 2 C. f(x) = x - 2 D. f(x) = x(x - 2)
Bài 1: tìm nghiệm của đa thức.
a) A(x) =\(\frac{1}{3}\)x + 1
⇔ 0 = \(\frac{1}{3}x+1\)
⇔ 0 = x + 3
⇔ -x = 3
⇔ x = -3
b) B(x) = \(\frac{2}{3}\)x +\(\frac{1}{5}\)
⇔ 0 = \(\frac{2}{3}x+\frac{1}{5}\)
⇔ 0 = 10x + 3
⇔ -10x = 3
⇔ x = \(-\frac{3}{10}\)
c) C(x) = (4x-1) . (2x+3)
⇔ 0 = (4x - 1).(2x + 3)
⇔ (4x -1).(2x +3) = 0
⇔ \(\left[{}\begin{matrix}4x-1=0\\2x+3=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{3}{2}\end{matrix}\right.\)
d) D(x) = (-5x+2).(x-7)
⇔ 0 = (-5x +2).(x - 7)
⇔ (-5x +2).( x -7) = 0
⇔ \(\left[{}\begin{matrix}-5x+2=0\\x-7=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\frac{2}{5}\\x=7\end{matrix}\right.\)
e) E(x) = -4x2+8x
⇔ 0 = -4x2 + 8x
⇔ -4x2 + 8x = 0
⇔ -4x.(x-2) = 0
⇔ x.(x-2) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Bài 6; tìm đa thức A biết :
a) A + 7x2y - 5xy2 -xy = x2y +8xy2 -5xy
A = x2y + 8xy2 -5xy -7x2y + 5xy2 + xy
A= -6x2y + 13xy2 - 4xy
b) 4x2 -7x +1- A = 3x2 -7x -1
⇔ 4x2 + 1 - A = 3x2 -1
-A= 3x2 -1 -4x2 -1
-A= -x2 - 2
A= x2 + 2
a) \(2x^2+3x^2-7x^2\)
= \(\left(2+3-7\right)x^2\)
= \(-2x^2\)
b) \(5xy-\frac{1}{3}xy+xy\)
= \(\left(5-\frac{1}{3}+1\right)xy\)
= \(\frac{11}{3}xy\)
c) \(15xy^2-\left(-5xy^2\right)\)
= \(15xy^2+5xy^2\)
= \(\left(15+5\right)xy^2\)
= \(20xy^2\)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
A= 15x\(^3\)y\(^2\).\((\dfrac{-2}{3}xy^2)\)
= -10x\(^4\)y\(^4\)
bậc đơn thức A là 4
B=2x\(^5\)y\(^2\).\(3^2x^3y^3\)
=18\(x^8y^5\)
bậc của đơn thức B là 8
C=5xy\(^2\).\(\dfrac{4}{15}xy^3z\)
= \(\dfrac{4}{3}x^2y^5z\)
Bậc của đơn thức C là 5
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
b) \(-A+5xy^3=-xy^3\)
\(\rightarrow-A=-xy^3-5xy^3\)
\(\rightarrow-A=-6xy^3\)
\(\Rightarrow A=6xy^3\)
c) \(-x^2y^6+A-5x^2y^6=-7x^2y^6\)
\(\rightarrow A=-7x^2y^6+x^2y^6+5x^2y^6\)
\(\Rightarrow A=-x^2y^6\)
-a+5xy^3=-xy^3
-a=-xy^3-5xy^3
-a=-6xy^3
a=6xy^3
-xy^6+a-5x^2y^6=-7x^2y^6
a=-7x^2y^6+5x^2y^6
a=-x^2-y^6