K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
2 tháng 3 2020
Lời giải:
Trước tiên, cần tìm đk của $m$ để 2 PT có nghiệm.
\(\left\{\begin{matrix} \Delta_1=(3m+2)^2-8.12>0\\ \Delta_2=(9m-2)^2-576>0\end{matrix}\right.(*)\)
Gọi nghiệm chung của 2 pt trên là $a$
Ta có: \(\left\{\begin{matrix} 2a^2-(3m+2)a+12=0\\ 4a^2-(9m-2)a+36=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4a^2-2(3m+2)a+24=0\\ 4a^2-(9m-2)a+36=0\end{matrix}\right.\)
\(\Rightarrow a(m-2)=4\)
Để $a$ tồn tại thì $m-2\neq 0$. Khi đó $a=\frac{4}{m-2}$
Thế vào PT(1):
\(2(\frac{4}{m-2})^2-(3m+2).\frac{4}{m-2}+12=0\)
Giải PT trên ta thu được $m=3$ (thỏa mãn $(*)$)
Vậy.....
Giải sai rồi Tiểu Ma Bạc Hà
Để Vì (1) = 0 , (2) = 0
=> \(2x^2-\left(3m+2\right)x+12=4x^2-\left(9m-2\right)x+36\) = 0
\(\Leftrightarrow2x^2-3mx-2x+12=4x^2-9mx+2x+36=0\)
\(\Leftrightarrow6mx=2x^2+4x+24=0\)
\(\Leftrightarrow3mx=x^2+2x+12=0\) (*)
Vì \(x^2+2x+12=x^2+2x+1+11=\left(x+1\right)^2+11\ge11\) , mâu thuẫn với (*)
=> Không tìm được điều kiện để hai phương trình có 1 nghiệm chung