Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(M(x)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=(2x^4-x^4)+(6x^3-2x^3-4x^3)+(-x^2+3x^2)+1\)
\(=x^4+2x^2+1\)
b.\(M(x)+N(x)=(x^4+2x^2+1)+(-5x^4+x^3+3x^2-3)\)
\(=(x^4-5x^4)+x^3+(2x^2+3x^2)+(1-3)\)
\(=-4x^4+x^3+5x^2-2\)
\(M(x)-N(x)=(x^4+2x^2+1)-(-5x^4+x^3+3x^2-3)\)
\(=(x^4+5x^4)-x^3+(2x^2-3x^2)+(1+3)\)
\(=6x^4-x^3-x^2+4\)
c.Ta có
\(M(x)=x^4+2x^2+1=0\)
\(\Rightarrow x^4+2x^2=-1\)
mà \(x^4\ge0;2x^2\ge0\)
Vậy đa thức \(M(x)\)ko có nghiệm
Chúc bạn học tốt
a) Thu gọn các đa thức:
N = 15y3 + 5y2 - y5 - 5y2 - 4y3 - 2y = -y5 + 11y3 - 2y
M = y2 + y3 -3y + 1 - y2 + y5 - y3 + 7y5 = 8y5 - 3y + 1.
b) N + M = -y5 + 11y3 - 2y + 8y5 - 3y + 1
= 7y5 + 11y3 - 5y + 1
N - M = -y5 + 11y3 - 2y - 8y5 + 3y - 1= -9y5 + 11y3 + y - 1.
a) Thu gọn mỗi đa thức
N = 15y3 + 5y2 – y5 – 5y2 – 4y3 – 2y
= –y5 + 11y3 – 2y
M = y2 + y3 – 3y + 1 – y2 + y5 – y3 + 7y5
= 8y5 – 3y + 1
b) N + M = –y5 + 11y3 – 2y + 8y5 – 3y +1
= 7y5 + 11y3 – 5y + 1
N – M = –y5 + 11y3 – 2y – 8y5 + 3y – 1
= –9y5 + 11y3 + y – 1
a) Ta có : \(\left|5x+15\right|\ge0\) với mọi \(x\)
\(\left|3y-2y\right|\ge0\) với mọi \(x,y\)
Nên \(\left|5x+15\right|+\left|3y-2x\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}5x+15=0\\3y-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\3y-2\times\left(-3\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)
Vậy........
Học tốt!!
Cảm ơn bạn rất rất rất rất nhiều!!!Bạn là cứu tinh cuả cuộc đời mình!!!!!!Tick rùi đó nha!!!^^
a) xy - 4x + 3y - 12 = 5
⇔ ( y - 4 ) ( x + 3 ) = 5
Vì x, y là các số nguyên nên :
Lập bảng ta có :
y-4 | 1 | 5 | -1 | -5 |
x+3 | 5 | 1 | -5 | -1 |
x | 2 | -2 | -8 | -4 |
y | 5 | 9 | -3 | -1 |
b)xy - 5x + 4y = 17
⇔ ( y - 5 ) ( x + 4 ) = -3
Tiếp tục lập bảng ...
c) ( x - 4 )2 + ( y + 6 )2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-6\end{matrix}\right.\)
c) Ta có: \(\left(x-4\right)^2\ge0\forall x\)
\(\left(y+6\right)^2\ge0\forall y\)
Do đó: \(\left(x-4\right)^2+\left(y+6\right)^2\ge0\forall x,y\)(1)
Ta lại có: \(\left(x-4\right)^2+\left(y+6\right)^2=0\)(đề bài cho)(2)
nên từ (1) và (2) suy ra
\(\left\{{}\begin{matrix}x-4=0\\y+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-6\end{matrix}\right.\)
Vậy: x=4 và y=-6
Bài 1:
A = 32 + 33 + 34 + ... + 32018
3A = 33 + 34 + 35 + ... + 32019
3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)
2A = 32019 - 9
A = (32019 - 9) : 2
= (32016.33 - 9) : 2
= [ (34)504.27 - 9] : 2
= [ (...1)504.27 - 9] : 2
= [ (...1).27 - 9] : 2
= [ (...7) - 9] : 2
= (....8) : 2
= ...4
Vậy c/s tận cùng của A là 4
Bài 2:
Ta có:
1019 + 1018 + 1017
= 1016.103 + 1016.102 + 1016.10
= 1016.(103 + 102 + 10)
= 1016.1110
= 1016.2.555
Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555
Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)
Bài 3:
x + 6 chia hết cho x + 2
=> x + 2 + 4 chia hết cho x + 2
=> 4 chia hết cho x + 2
=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}
x + 2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
Vậy x = {-1;-3;0;-4;2;-6}
Bài 4:
Giả sử x + 4y chia hết cho 7 (1)
Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7
=> 6x + 10y chia hết cho 7 (2)
Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7
=> x + 4y + 6x + 10y chia hết cho 7
=> (x + 6x) + (4y + 10y) chia hết cho 7
=> 7x + 14y chia hết cho 7
=> 7(x + 2y) chia hết cho 7
=> Giả sử đúng
Vậy x + 4y chia hết cho 7 (đpcm)
Bài 5:
1, Ta có: \(-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)
\(\Rightarrow A\le0\)
Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2
Vậy GTNN của A là -1 khi x = -2
2, Ta có: \(x^2\ge0\)
\(\left|2y-18\right|\ge0\)
\(\Rightarrow x^2+\left|2y-18\right|\ge0\)
\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)
Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)
Bài 6:
1, xy + 2x - y - 2 = 5
<=> x(y + 2) - (y + 2) = 5
<=> (x - 1)(y + 2) = 5
=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}
Ta có bảng:
x - 1 | 1 | -1 | 5 | -5 |
y + 2 | 5 | -5 | 1 | -1 |
x | 2 | 0 | 6 | -4 |
y | 3 | -7 | -1 | -3 |
Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)
2, x + y = 2xy
<=> 2xy - x - y = 0
<=> 2(2xy - x - y) = 2.0
<=> 4xy - 2x - 2y = 0
<=> (4xy - 2x) - 2y - 1 = 0 - 1
<=> 2x(2y - 1) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = -1
=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}
Ta có bảng:
2x - 1 | 1 | -1 |
1 - 2y | -1 | 1 |
x | 1 | 0 |
y | 1 | 0 |
a/
\(M+5x^2-2xy-6x^2-9xy+y^2=0\)
\(M-x^2-11xy+y^2=0\)
\(M-x^2+y^2-11xy=0\)
\(M=x^2-y^2+11xy\)
Vậy:..
Câu b tương tự
M + (5x2 - 2xy) = 6x2 + 9xy - y2 ta có M = ( 6x2 + 9xy - y2) -(5x2 - 2xy)= x2 +11xy -y2