Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A+\left(x^2+y^2\right)=5^2+3^2-xy\)
=> \(A+\left(x^2+y^2\right)=25+9-xy\)
=> \(A+\left(x^2+y^2\right)=36-xy\)
=> \(A=\left(36-xy\right)-\left(x^2+y^2\right)\)
=> \(A=36-xy-x^2-y^2\)
b/ \(\left(\frac{1}{2}xy^2+x^2-x^2y\right)-A=-xy^2+xy^2+2\)
=> \(\left(\frac{1}{2}xy^2+x^2-x^2y\right)-A=2\)
=> \(-A=2-\left(\frac{1}{2}xy^2+x^2-x^2y\right)\)
=> \(-A=2-\frac{1}{2}xy^2+x^2-x^2y\)
=> \(-A=-\left(-2+\frac{1}{2}xy^2-x^2+x^2y\right)\)
=> \(A=-2+\frac{1}{2}xy^2-x^2+x^2y\)
a.M=3xy2-2xy-2
b.Thay x=1,y=2 vào đa thức M ta được:
M=3.1.22-2.1.2-2=12-4-2=6
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
ô ri đúng
TA CÓ: \(B-\left(x^2+xy+y^2\right)=2x^2-xy+y^2\)
\(\Rightarrow B=\left(2x^2-xy+y^2\right)+\left(x^2+xy+y^2\right)\)
\(B=2x^2-xy+y^2+x^2+xy+y^2\)
\(B=\left(2x^2+x^2\right)+\left(y^2+y^2\right)+\left(xy-xy\right)\)
\(B=3x^2+2y^2\)
TA CÓ: \(\left(\frac{1}{2}.xy+x^2-\frac{1}{2}x^2y\right)-C=-xy+x^2y+1\)
\(\Rightarrow C=\left(\frac{1}{2}xy+x^2-\frac{1}{2}x^2y\right)-\left(-xy+x^2y+1\right)\)
\(C=\frac{1}{2}xy+x^2-\frac{1}{2}x^2y+xy-x^2y-1\)
\(C=\left(\frac{1}{2}xy+xy\right)+\left(\frac{-1}{2}x^2y-x^2y\right)+x^2-1\)
\(C=\frac{3}{2}xy+\frac{-3}{2}x^2y+x^2-1\)
mk nha