Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét phương trình \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)
Ta có \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2a\ge0\) với mọi a
Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lĩ)
Vậy \(\Delta'>0\Rightarrow f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số có cực đại và cực tiểu
b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a;x_1x_2=-4\left(1+\cos2a\right)\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)\)
\(=9+8\cos^2a-6\sin a\cos a\)
\(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2\)
\(=18-\left(3\sin a+\cos a\right)^2\le18\)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
\((6^2)^x.6^3<2^x.2^7.\dfrac{(3^3)^x}{3}=(2.3^3)^x.\dfrac{2^7}{3}\Leftrightarrow \left(\dfrac{2.3^3}{6^2}\right)^x>\dfrac{3.6^3}{2^7}\)
Suy ra \(\left(\dfrac{3}{2}\right)^x>\left(\dfrac{3}{2}\right)^4\).
Vậy x>4
Câu 1:
\(A=\int \frac{2\sin x+\cos x}{3\sin x+2\cos x}dx\)
\(A=\int \frac{\frac{8}{13}(3\sin x+2\cos x)-\frac{1}{13}(3\cos x-2\sin x)}{3\sin x+2\cos x}dx\)
\(A=\frac{8}{13}\int dx-\frac{1}{13}\int \frac{(3\cos x-2\sin x)dx}{3\sin x+2\cos x}\)
\(A=\frac{8}{13}x-\frac{1}{13}\int \frac{d(3\sin x+2\cos x)}{3\sin x+2\cos x}\)
\(A=\frac{8}{13}x-\frac{1}{13}\ln |3\sin x+2\cos x|+c\)
Câu 2:
Ta có: \(I=\int \frac{x^3}{x^4+3x^2+2}dx=\int \frac{x^3}{(x^2+1)(x^2+2)}dx\)
\(=\int x^3\left(\frac{1}{x^2+1}-\frac{1}{x^2+2}\right)dx=\int \frac{x^3dx}{x^2+1}-\int \frac{x^3}{x^2+2}dx\)
\(=\frac{1}{2}\int \frac{x^2d(x^2+1)}{x^2+1}-\frac{1}{2}\int \frac{x^2d(x^2+2)}{x^2+2}\)
\(=\frac{1}{2}\int \left(1-\frac{1}{x^2+1}\right)d(x^2+1)-\frac{1}{2}\int \left(1-\frac{2}{x^2+2}\right)d(x^2+2)\)
\(=\frac{1}{2}\int d(x^2+1)-\frac{1}{2}\int \frac{d(x^2+1)}{x^2+1}-\frac{1}{2}\int d(x^2+2)+\int \frac{d(x^2+2)}{x^2+2}\)
\(=\frac{x^2+1}{2}-\frac{1}{2}\ln |x^2+1|-\frac{x^2+2}{2}+\ln |x^2+2|+c\)
\(=\ln |x^2+2|-\frac{1}{2}\ln |x^2+1|+c\)
Gọi tọa độ điểm cực đại là A(0;2), điểm cực tiểu B (2;-2)
Xét biểu thức P=3x-y-2
Thay tọa độ điểm A (0;2) => P=-4<0, thay tọa độ điểm B (2;-2) => P=6>0
Vậy 2 điểm cực đại và cực tiểu nằm về 2 phía của đường thẳng y=3x-2.
Để MA+MB nhỏ nhất => 3 điểm A,M,B thẳng hàng
Phương trình đường thẳng AB : y =-2x+2
Tọa độ điểm M là nghiệm của hệ :
\(\begin{cases}y=3x-2\\y=-2x+2\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{4}{5}\\y=\frac{2}{5}\end{cases}\) \(\Leftrightarrow M\left(\frac{4}{5};\frac{2}{5}\right)\)
Hàm số có cực địa và cực tiểu <=> phương trình y'(x) = 0 có hai nghiệm phân biệt :
\(\Leftrightarrow3\left(m+2\right)x^2+6x+m=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\begin{cases}m+2\ne0\\\Delta'=-3m^2-6m+9>0\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-2\\m^2+2m-3< 0\end{cases}\) \(\Leftrightarrow-3< m\ne-2< 1\)
Điểm cực tiểu A(0;-2), điểm cực đại B(2;2)
Mình không hiểu đề bài yêu cầu tìm đường thẳng đi qua điểm A và B, đi qua cả A và B hay là các tiếp tuyến tại A và B?