Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: R\{-1}
Hàm số đồng biến trên các khoảng và do đó không có cực trị.
\(\left\{{}\begin{matrix}z'_x=-2x.e^{y-x^2+5}+8x^3=0\\z'_y=e^{y-x^2+5}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(8x^2-2e^{y-x^2+5}\right)=0\\y-x^2+5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x=0\\y-x^2+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)
Th2: \(\left\{{}\begin{matrix}4x^2=e^{y-x^2+5}\\y-x^2+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x^2=1\\y-x^2+5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-\frac{19}{4}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{19}{4}\end{matrix}\right.\)
Ta có các điểm dừng: \(M\left(0;-5\right)\) ; \(N\left(\frac{1}{2};-\frac{19}{4}\right)\) ; \(P\left(-\frac{1}{2};-\frac{19}{4}\right)\)
\(z''_{xx}=\left(4x^2-2\right)e^{y-x^2+5}+24x^2\)
\(z''_{xy}=-2x.e^{y-x^2+5}\) ; \(z''_{yy}=e^{y-x^2+5}\)
Tại M: \(A=-2\) ; \(B=0\) ; \(C=1\Rightarrow B^2-AC=2>0\Rightarrow M\) không phải cực trị
Tại N: \(A=5>0\) ; \(B=-1\) ; \(C=1\Rightarrow B^2-AC=-4< 0\Rightarrow\) hàm đạt cực tiểu tại N
Tại P: \(A=5>0\) ; \(B=1\) ; \(C=1\Rightarrow B^2-AC=-4< 0\Rightarrow\) hàm đạt cực tiểu tại P
Ta có :
\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\) (1)
Theo bất đẳng thức Cô-si ta có :
\(\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge9\)
Vì \(x+y+z=1\) nên có
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{4}\)
Thế vào (1) ta có :
\(P\le\frac{3}{4}\) với mọi \(\left(x,y,z\right)\in D\)
Mặt khác lấy \(x=y=z=\frac{1}{3}\), khi đó \(\left(x,y,z\right)\in D\) ta có \(P=\frac{3}{4}\) vậy max \(P=\frac{3}{4}\)