Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
2/
a/ ĐKXĐ:...
\(\Leftrightarrow x^2+\left(\frac{x}{x+1}\right)^2-2x.\frac{x}{x+1}+\frac{2x^2}{x+1}=1\)
\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+\frac{2x^2}{x+1}-1=0\)
\(\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+\frac{2x^2}{x+1}-1=0\)
Đặt \(\frac{x^2}{x+1}=a\Rightarrow a^2+2a-1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1+\sqrt{2}\\a=-1-\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x+1}=-1-\sqrt{2}\\\frac{x^2}{x+1}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+\left(1+\sqrt{2}\right)x+1+\sqrt{2}=0\\x^2-\left(\sqrt{2}-1\right)x+1-\sqrt{2}=0\end{matrix}\right.\)
Xấu quá, bạn tự giải tay pt bậc 2 này đi
b/ ĐKXĐ: \(-2\le x\le6\)
\(VT=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{\left(1+1\right)\left(6-x+x+2\right)}=4\)
\(VP=\left(x-3\right)^2+4\ge4\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}6-x=x+2\\x-3=0\end{matrix}\right.\)
Phương trình vô nghiệm
1/
\(\Leftrightarrow5x^2+2\left(3y+1\right)x+2y^2+2y-40=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-40\right)\)
\(=-y^2-4y+201=205-\left(y+2\right)^2\)
Để phương trình có nghiệm nguyên \(\Leftrightarrow\Delta'\) là số chính phương
\(\Rightarrow205-\left(y+2\right)^2=k^2\)
\(\Rightarrow k^2+\left(y+2\right)^2=205=3^2+14^2=6^2+13^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=\pm3\\y+2=\pm14\\y+2=\pm6\\y+2=\pm13\end{matrix}\right.\)
Thay ngược lại (1) tìm x
Lời giải:
\(x^3+y^3+8=6xy\)
\(\Leftrightarrow (x+y)^3-3xy(x+y)+8-6xy=0\)
\(\Leftrightarrow [(x+y)^3+2^3]-3xy(x+y+2)=0\)
\(\Leftrightarrow (x+y+2)[(x+y)^2-2(x+y)+4]-3xy(x+y+2)=0\)
\(\Leftrightarrow (x+y+2)(x^2+y^2+4-xy-2x-2y)=0\)
\(\Rightarrow \left[\begin{matrix} x+y+2=0\\ x^2+y^2+4-xy-2x-2y=0\end{matrix}\right.\)
Nếu $x+y+2=0\Rightarrow x+y=-2$
\(P=4(x+y)-(x+2).\frac{(2+y)}{y}.\frac{y+x}{x}=4(x+y)-\frac{(xy+2x+2y+4)(x+y)}{xy}\)
\(=4(-2)-\frac{[xy+2(-2)+4](-2)}{xy}=-8-(-2)=-6\)
Nếu \(x^2+y^2+4-xy-2x-2y=0\)
\(\Leftrightarrow 2x^2+2y^2+8-2xy-4x-4y=0\)
\(\Leftrightarrow (x^2-2xy+y^2)+(x^2-4x+4)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-y)^2+(x-2)^2+(y-2)^2=0\)
Từ đây dễ dàng suy ra \((x-y)^2=(x-2)^2=(y-2)^2=0\Rightarrow x=y=2\)
\(P=4(2+2)-(2+2)(\frac{2}{2}+1)(\frac{2}{2}+1)=0\)
Ta có \(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)
\(\Leftrightarrow\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)
\(\Leftrightarrow\frac{x+15}{13}+\frac{2\left(x+15\right)}{15}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)=0\Leftrightarrow x+15=0\)vì \(\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)\ne0\)
\(\Leftrightarrow x=-15\)
Vậy \(x=-15\)
a)\(5x^2+13y^2+6xy=12x-4y\)
\(\Leftrightarrow5x^2+6x\left(y-2\right)+13y^2+4y=0\)
pt có nghiệm:\(\Delta'=9\left(y-2\right)^2-65y^2-20y\ge0\)
\(\Leftrightarrow9y^2-36y+36-65y^2-20y\ge0\)
\(\Leftrightarrow-56y^2-56y+36\ge0\)
Mà \(y\in Z\)\(\Rightarrow-1\le y\le0\)
\(\Rightarrow y=0;1\)
Thay vào tìm x
Nốt câu b:
\(x^3+y^3+3xy\left(x+y\right)-3xy\left(x+y\right)-6xy-1=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y+2\right)+1=0\)
\(\Leftrightarrow\left(x+y\right)^3+8-3xy\left(x+y+2\right)-7=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2+2xy-2x-2y+4\right)-3xy\left(x+y+2\right)=7\)
\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2-xy-2x-2y+4\right)=7\)
\(\Leftrightarrow...\)