K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

Ước nguyên nhỏ nhất là \(-\left(215^2+314^2\right)\)

Ước nguyên lớn nhất là \(\left(215^2+314^2\right)\)

10 tháng 8 2018

Ước nguyên nhỏ nhất là - ( 2152 + 314)

Ước nguyên lớn nhất là ( 2152 + 314)

Chúc bạn học tốt

17 tháng 4 2018

a. Phân số đó là 1/5 

b. 28 và 40 

c. 30 và 10

17 tháng 4 2018

Giaỉ thích gìum  với

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

24 tháng 7 2016

a ) Với p = 3 , p là số nguyên tố và \(p^2+8=3^2+8=17\)cũng là số nguyên tố => p = 3 thỏa mãn đề bài 

Xét với p > 3 , ta biểu diễn : 

\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 ắt sẽ có một số chia hết cho 3.

Vì p là số nguyên tố , p > 3 nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3. Suy ra tích (p - 1)(p + 1) chia hết cho 3. Lại có 9 chia hết cho 3

\(\Rightarrow p^2+8\)chia hết cho 3. (vô lí vì  \(p^2+8\)là số nguyên tố lớn hơn 3) 

Vậy p = 3 \(\Rightarrow p^2+2=3^2+2=11\)là số nguyên tố (đpcm)

b) Với p = 3 thì \(8p^2+1\)là số nguyên tố.

Với p là số nguyên tố, p > 3 : 

Ta có : \(8p^2+1=8\left(p^2-1\right)+9=8\left(p-1\right)\left(p+1\right)+9\)

Xét ba số nguyên liên tiếp : p - 1 , p , p + 1 , ắt sẽ tìm được một số chia hết cho 3

Vì p là số nguyên tố, p > 3 , nên p không chia hết cho 3. Vậy một trong hai số p - 1 , p + 1 chia hết cho 3 

Suy ra tích (p - 1)(p + 1) chia hết cho 3 . Lại có 9 chia hết cho 3

=> 8p2 + 1 chia hết cho 3 (vô lí vì 8p2 + 1 là số nguyên tố lớn hơn 3)

Vậy p = 3 . Suy ra 2p + 1 = 7 là số nguyên tố. (đpcm)

28 tháng 8 2021

\(A=x^2+2x+9y^2-6y+2018\)

\(=x^2+2x+1+9y^2-6y+1+2016\)

\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)

Dấu ''='' xảy ra khi x = -1 ; y = 1/3 

Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3 

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

12 tháng 8 2021

toàn hđt mà bạn 

a, \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6=\left(\frac{x}{2}+y^2\right)^3\)

b, \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)

c, \(8u^3-48u^2v+96uv^2-64v^3=\left(2y-4v\right)^3\)

d, \(\left(z-t\right)^3+15\left(z-t\right)^2+75\left(z-t\right)+125\)

\(=\left(z-t+5\right)^3\); e, \(x^3+3x^2+3x+1=\left(x+1\right)^3\)

12 tháng 8 2021

sửa hộ mình ý c =)) do gần nhau quá nên đánh lộn 

\(\left(2u-4v\right)^3\)

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN