Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+9=-y^2-10y-20.\)
\(\left(x-3\right)^2=-y^2-10y-20\)
\(\left(x-3\right)^2=-y^2-10y-20\)
\(\left(x-3\right)^2=-\left(y^2+2.5y+25\right)+5\)
\(\left(x-3\right)^2=-\left(y+5\right)^2+5\)
\(\hept{\begin{cases}x=3\\y+5=\sqrt{5}\Leftrightarrow y=\sqrt{5}-5\end{cases}}\)
b)
\(\left(4x^2-4x+1\right)=-y^2-x^2-2xy\)
\(\left(2x-1\right)^2=-\left(y+x\right)^2\)
\(x=\frac{1}{2}\Leftrightarrow y=-\frac{1}{2}\)
\(x^2-4xy+5y^2+6x-10y+10=0\)
\(x^2-2x\left(2y-3\right)+5y^2-10y+10=0\)
\(x^2-2x\left(2y-3\right)+\left(4y^2-12x+9\right)+\left(y^2+2x+1\right)=0\)
\(x^2-2x\left(2y-3\right)+\left(2y-3\right)^2+\left(y+1\right)^2=0\)
\(\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-2y+3\right)^2\ge0\forall x;y\\\left(y+1\right)^2\ge0\forall y\end{cases}}\)\(\Rightarrow\left(x-2y+3\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Mà \(\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2y+3\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2y+3=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-2y+3=0\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x+2+3=0\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)Vậy \(\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Tham khảo nhé~
Sao anh kudo không tách thẳng như vầy luôn cho nhanh?(nhanh hơn đúng 1 dòng ở phần phân tích thôi:v)
\(A=x^2-4xy+5y^2+6x-10y+10=0\)
\(\Leftrightarrow\left(x^2-2.x.2y+4y^2\right)+\left(6x-12y\right)+9+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left[\left(x-2y\right)^2+2.\left(x-2y\right).3+3^2\right]+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)
Đến đây ez rồi!
Ta có :
\(2x^2+y^2-6x+2xy-2y+5=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}\)
đặt t=x+y
x^2 +2xy+6x+6y+2y^2+8=0
x^2+2xy+y^2+6(x+y)+8= -y^2
(x+y)^2 + 6(x+y)+8 = -y^2
t^2 +6t +8= -y^2
(t+2)(t+4) = -y^2
do y^2 >=0 với mọi y
-y^2 <=0 với mọi y
t^2+6t+8<=0
(t+2)(t+4)<=0
* Trường hợp 1: t+2<=0 và t+4>=0 (1)
t<=-2 và t>=4
* trường hợp 2: t+2>=0 và t+4<=0 (2)
t>= -2 và t<= -4 ( vô nghiệm)
Từ (1), (2) ta có:
-4<= t <=-2
-4 <= x+y <= -2
-4 + 2016 <= x+y+ 2016 <= -2 +2016
2012 <= x+y +2016 <= 2014
Bmin= 2012
Bmax= 2014
*Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0
thì x=-4 và y=0
* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0
thì x=-2 và y=0
vậy Bmin= 2012 khi (x,y) = (-4, 0)
Bmax= 2014 khi (x,y)= (-2,0)