K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}\ge0\\\left(2y-1\right)^{2016}\ge0\\\left|x+2y-z\right|^{2017}\ge0\end{matrix}\right.\Rightarrow\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}\ge0\)

\(\left(x-1\right)^{2017}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^{2016}=0\\\left(2y-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\\z=2\end{matrix}\right.\)

24 tháng 8 2017

Thanks Nguyễn Huy Tú nhìu!!

22 tháng 3 2019

Ta có

(x -1)^2016 >0; (2y-1)^2016>0;  /x+2y-z/^2017>0

Mà tổng ba số trên bằng 0

=>(x-1)^2016=0 ; (2y-1)^2016=0; /x+2y-z/=0

=>x=1; y=1/2; z= 2

23 tháng 10 2016

Đề thiếu nhé,

23 tháng 12 2020

=0 nữa

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

18 tháng 12 2016

khó hiểu làm sao ?

18 tháng 12 2016

Đề chỉ nhiêu đâu thôi hả

7 tháng 5 2018

Vì : (3x+1)2018+(2y-1)2018+\(\left|x+2y-z\right|\)2018=0

Nên: \(\left\{{}\begin{matrix}\left(3x+1\right)^{2018}=0\\\left(2y-1\right)^{2018}\\\left|x+2y-z\right|^{2018}=0\end{matrix}\right.=0\)\(\left\{{}\begin{matrix}3x+1=0\\2y-1=0\\x+2y-z=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{2}\\\dfrac{-1}{3}+1-z=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{2}\\z=\dfrac{2}{3}\end{matrix}\right.\)

Vậy : x=\(\dfrac{-1}{3}\) ; y=\(\dfrac{1}{2}\) ; z=\(\dfrac{2}{3}\)

14 tháng 3 2017

các bạn ui giúp mk vs

14 tháng 3 2017

ở câu 4 là khi chia a cho 8/9 và 12/17 nha