Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do UCLN là 5 nên a, b chia hết cho 5 => tận cùng là 0 hoặc 5
Ta có 20 = 15 + 5 = 18 + 2=19+1=17+3=16+4=14+6=13+7=12+8=11+9
=> 2 số a và b là 15 và 5 hoặc 5 và 15
Bài sau làm tương tự em nhé :)
Vì \(\left(x,y\right)=5\) nên ta có: \(\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà \(xy=825\)
\(\Rightarrow5m.5n=825\)
\(\Rightarrow25m.n=825\)
\(\Rightarrow mn=33\)
\(\left(m,n\right)=1\), ta có bảng sau:
m | 1 | 33 | 3 | 11 |
n | 33 | 1 | 11 | 3 |
x | 5 | 165 | 15 | 55 |
y | 165 | 5 | 55 | 15 |
Vậy \(\left(x;y\right)\in\left\{\left(5;165\right);\left(165;5\right)\left(15;55\right);\left(55;15\right)\right\}\).
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
Đặt x=50a, y=50b ( a>b vả UCLN(a,b)=1)
Ta có x+y=50a+50b=300 suy ra a+b=6
Vì a>b và a,b nguyên tố cùng nhau nên ta chọn được a=5 và b=1 suy ra x=250 và y=50
Chúc bạn học tốt!
a. x-3=xy+2y => x-3=y.(x+2)
=> y=\(\frac{x-3}{x+2}=\frac{x+2-5}{x+2}=1-\frac{5}{x+2}\)
Để y là số tự nhiên thì 5 chia hết cho x+2
=> x+2 thuộc Ư(5) => x+2 thuộc {1;5}
Lại có để y là số tự nhiên thì 1>=5/(x+2)
=> 5/(x+2)=1=> x+2=5=> x=3
=> y=0
Vậy (x;y)=(3;0)
c. (2xy-6x)+y=13
=> 2x(y-3)+(y-3)=10
=> (y-3)(2x+1)=10=1.10=10.1=2.5=5.2
Mà 2x+1 là số lẻ => 2x+1 thuộc {1;5}
• 2x+1=1 thì y-3=10 => x=0; y=13
• 2x+1=5 thì y-3=2 => x=2; y=5
Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau
\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)
Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)
Không thỏa mãn điều kiện vì 12 không chia hết cho 5
Ta có : \(x=8x',y=8y'\)(như trên)
Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)
Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)
Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)
vì ƯCLN(x,y) = 5 nên x = 5 . x' ; y = 5 . y' và ƯCLN(x',y')
Ta có : x . y = 50
=> x . y = 5 . x' . 5 . y' = (5 . 5) . x' . y' = 50
=> x' . y' = 50 : (5 . 5) = 50 : 25 = 2
Do đó, ta có :
=>
Vậy các số tự nhiên x,y cần tìm là 5 và 10; 10 và 5
Gọi x = 5 . a ; y = 5 . b thì (a ; b) = 1 và a; b \(\in\)N*
Ta có x . y = 5 . a . 5 . b = 50
5 . 5 . a . b = 50
25 . a . b = 50
a . b = 50 : 25
a . b = 2
\(\Rightarrow\orbr{\begin{cases}a=1\\b=2\end{cases}\Rightarrow\orbr{\begin{cases}x=a.5=1.5=5\\y=b.5=2.5=10\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}a=2\\b=1\end{cases}\Rightarrow\orbr{\begin{cases}x=a.5=2.5=10\\y=b.5=1.5=5\end{cases}}}\)
Vậy ta có các bộ số (x, y) như sau : (5, 10) ; (10, 5)