K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

xét b khác không:

(2^a+1)(2^a+2)(2^a+3) chia hết cho 3

Mà 2.6^b chia hết cho 3

=>Vế trái chia hết cho 3

=>992 chia hết cho 3(vô lí )   (loại)

Vậy b chỉ có thể =0

Thay vào ta được :

(2^a+1)(2^a+2)(2^a+3)= 992 - 2

=>(2^a+1)(2^a+2)(2^a+3)= 9.10.11

=>2^a+1=9

=>2^a=8

=>a=3 

BẠN NHỚ

7 tháng 6 2020

vì (3^a-1).......(3^a-6) là 6 số tự nhiên liên tiếp nên (3^a-1)......(3^a-6) :6

    => (3^a-1)......(3^a-6) chẵn

             mà 20159 lẻ 

              nên 2016 lẻ

               => b=0 

          ta có : (3^a-1) .....(3^a-6) = 1+ 20159

  => (3^a-1) ....(3^a-6)= 20160 =8:7;6;5;4;3

         => 3^a-1= 8

            3^a=9

           a=2

  vậy ..............

      

              

5 tháng 5 2017

a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)

\(\Leftrightarrow15-12n+27+2n>0\)

\(\Leftrightarrow42-10n>0\)

\(\Leftrightarrow-10n>-42\Leftrightarrow n< 4,2\)

Vậy \(S=\left\{n|n< 4,2\right\}\)

b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)

\(\Leftrightarrow n^2+4n+4-n^2+9\le40\)

\(\Leftrightarrow4n+13\le40\)

\(\Leftrightarrow4n\le27\Leftrightarrow n\le6,75\)

Vậy \(S=\left\{n|n\le6,75\right\}\)

9 tháng 4 2017

Bài 2: 

A = (a+b)(1/a+1/b)

Có: \(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)

=> ĐPCM

11 tháng 4 2018

1.b)

Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19 
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}

13 tháng 10 2019

Ta co:

\(\left(1+a^2\right)^2\le\left(1+a\right)\left(1+a\right)=\left(1+a\right)^2\)

\(\Rightarrow1+a^2\le1+a\)

The same:

\(1+b^2\le1+b\)

\(1+c^2\le1+c\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\le\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\frac{\left(3+a+b+c\right)^3}{27}=\frac{6^3}{27}=8\)

Ta lai co:

\(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{27}{27}=1\)

\(abc\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\le8\)

Dau '=' xay ra khi \(a=b=c=1\)

14 tháng 10 2019

Ta co:

\(abc\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)

\(=\frac{2a\left(1+a^2\right)2b\left(1+b^2\right)2c\left(1+c^2\right)}{8}\le\frac{\frac{\left[\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\right]^2}{64}}{8}\le\frac{\frac{\left(a+b+c+3\right)^{12}}{27^4}}{512}=\frac{\frac{6^{12}}{27^4}}{512}=8\)

Dau '=' xay ra khi \(a=b=c=1\)