Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số:Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
Tất cả số tự nhiên, tận cùng là 53 đều thỏa mãn điều kiện.
học tốt nhé
có gì ủng hộ mik vs nhe.
Theo đề bài ta có:
x=4a+1
x=25b+3
<=>4a+=25b+3
4a=25b+2
a=(25b+2):4
b=2;a=13<=>x=53
b=6;a=38<=>x=153
b=10;a=63<=>x=253
b=14;a=88<=>x=353
b=18;a=113<=>x=453
..........
Đáp số:
Tất cả các số tự nhiên , tận cùng là 53 đều thỏa mãn điều kiện.
CHÚC BẠN HỌC TỐT!
heo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
...
Đáp số:
Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện
Gọi số đó là \(a(a\in N;a\leq3)\)
The đề bài tao có: \((a-2)\vdots 3;4;5;6\) hay \((a-2)\in BC\{3;4;5;6\}\)
\(BCNN\{3;4;5;6\}=2^2.3.5=60 \) nên \(BC\{3;4;5;6\}=\{0;60;120;180;...\}\)
\(\implies (a-2)\in\{0;60;120;180;...\}\)
\(\implies a\in\{2;62;122;182;...\}\)
Thất 122 là số nhỏ nhất trong các số trên chia cho 7 dư 3.
Vậy số cần tìm là 122.
~ Hok tốt a~
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
...
Đáp số:
Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
...
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
Gọi số đó là a
a chia 4 dư 1 => a -1 chia hết cho 4 => a -1 + 48 = a + 47 chia hết cho 4
a chia 25 dư 3 => a - 3 chia hết cho 25 => a - 3 + 50 = a + 47 chia hết cho 25
=> a + 47 \(\in\) BC(4;25) = B(100) = {0;100;200;...}
Vì a là số tự nhiên nên a + 47 > 0
=> a + 47 = 100 hoặc 200; ...
a+ 47 = 100 => a = 53
a + 47 = 200 => a = 153
...
Vậy a là số tự nhiên sao cho a = 100k - 47 (k \(\in\)N*)