K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2022

\(x^2+3x+5=xy+2y\\ \Leftrightarrow x^2+3x-xy-2y+5=0\\ \Leftrightarrow x\left(x+2\right)-y\left(x+2\right)+\left(x+2\right)+3=0\\ \Leftrightarrow\left(x+2\right)\left(x-y+1\right)=-3=\left(-1\right)\cdot3=\left(-3\right)\cdot1\)

\(TH_1:\left\{{}\begin{matrix}x+2=-3\\x-y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-5\end{matrix}\right.\to\left(-5;-5\right)\\ TH_2:\left\{{}\begin{matrix}x+2=3\\x-y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\to\left(1;3\right)\\ TH_3:\left\{{}\begin{matrix}x+2=1\\x-y+1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\to\left(-1;3\right)\\ TH_4:\left\{{}\begin{matrix}x+2=-1\\x-y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\end{matrix}\right.\to\left(-3;-5\right)\)

Vậy \(\left(x;y\right)=\left(-5;-5\right);\left(1;3\right);\left(-1;3\right);\left(-3;-5\right)\)

23 tháng 3 2018

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

23 tháng 3 2018

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
4 tháng 4 2016

bài này thiếu dữ kiện hay sao ấy

4 tháng 4 2016

thiếu đề bạn ơi

18 tháng 1 2016

tic cho mình hết âm nhé

15 tháng 1 2020

d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath

28 tháng 11 2020

Hình như đề sai bạn ơi: Phải là \(x^2+xy+y^2=x^2y^2\)chứ bạn

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow x^2+xy+y^2+xy=x^2y^2+xy\)

\(\Leftrightarrow x^2+2xy+y^2=xy.xy+xy\left(1\right)\)

\(\Leftrightarrow\left(x^2+xy\right)+\left(xy+y^2\right)=xy.\left(xy+1\right)\)

\(\Leftrightarrow x.\left(x+y\right)+y.\left(x+y\right)=xy.\left(xy+1\right)\)

\(\Leftrightarrow\left(x+y\right).\left(x+y\right)=xy.\left(xy+1\right)\left(2\right)\)

\(\text{Từ (1) bạn có thể suy ra (2) luôn nha vì áp dụng hằng đẳng thức,mình ghi vậy cho bạn hiểu thôi.}\)

\(\text{Ta có VP:}xy\text{ và }xy+1\text{ là hai số liên tiếp nhau}\left(3\right)\)

\(\text{Mà VT lại là:}xy\text{ và }xy\text{ là hai số bằng nhau}\left(4\right)\)

\(\text{Từ (3) và (4)}\Rightarrow\text{Không có giá trị của }x,y\Rightarrow x,y\in\varnothing\)

\(\text{Vậy }x,y\in\varnothing\)

14 tháng 9 2016

a)xy-7x-2y=15

=>x(y-7)-2y=15

=>x(y-7)-2y+14=15+14

=>x(y-7)-2(y-7)=29

=>(x-2)(y-7)=29

=>x-2 và y-7 thuộc Ư(29)={1;-1;29;-29}

Với x-2=1 =>x=3 <=> y-7=29 =>y=36

Với x-2=-1 =>x=1 <=>y-7=-29 =>y=-22

Với x-2=29 =>x=31 <=>y-7=1 =>y=8

Với x-2=-29 =>x=-27 <=>y-7=-1 =>y=6

Vậy .....

 

 

14 tháng 9 2016

b)x2+5x-2xy-10y-11=0

<=>x2+5x-2xy-10y=11

<=>(x2-2xy)+(5x-10y)=11

<=>x(x-2y)+5(x-2y)=11

<=>(x+5)(x-2y)=11

=>x+5 và x-2y thuộc Ư(11)={1;-1;11;-11}

Xét x+5=1 =>x=-4 <=>x-2y=11 <=>-4-2y=11 =>y=\(-7\frac{1}{2}\left(loai\right)\)

Xét x+5=11 =>x=6 <=>x-2y=1 <=>6-2y=1 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-1 =>x=-6 <=>-6-2y=-11 =>y=\(2\frac{1}{2}\left(loai\right)\)

Xét x+5=-11 =>x=-16 <=>-16-2y=-11 =>y=\(-2\frac{1}{2}\left(loai\right)\)

Vậy ko có giá trị x,y nguyên nào thỏa mãn

 

3 tháng 12 2019

Câu hỏi của Nguyen Thao An - Toán lớp 7 - Học toán với OnlineMath