Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{19}{100}\)
=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)
=>\(\frac{1}{5}-\frac{1}{x+1}\)\(=\frac{19}{100}\)
=>\(\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)
=>\(\frac{1}{x+1}=\frac{1}{100}\)
=> x+1 =100
=>x=99
b) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Rightarrow x+1=100\)
\(\Rightarrow x=99\)
c) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{49}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{50}{99}\)
\(\Rightarrow50.\left(x+2\right)=99\)
\(\Rightarrow x+2=\frac{99}{50}\)
\(\Rightarrow x=-\frac{1}{99}\)
d) Ta có : 6 = 1.6 = 2.3 = (-2) . (-3)
Lâp bảng xét 6 trường hợp:
\(2x+1\) | \(1\) | \(6\) | \(2\) | \(3\) | \(-2\) | \(-3\) |
\(y-2\) | \(6\) | \(1\) | \(3\) | \(2\) | \(-3\) | \(-2\) |
\(x\) | \(0\) | \(\frac{5}{2}\) | \(\frac{1}{2}\) | \(1\) | \(-\frac{3}{2}\) | \(-2\) |
\(y\) | \(8\) | \(3\) | \(5\) | \(4\) | \(-1\) | \(0\) |
Vậy các cặp (x,y) \(\inℤ\)thỏa mãn là : (0;4) ; (1; 4) ; (-2 ; 0)
e) \(x^2-3xy+3y-x=1\)
\(\Rightarrow x\left(x-3y\right)+3y-x=1\)
\(\Rightarrow x\left(x-3y\right)-\left(x-3y\right)=1\)
\(\Rightarrow\left(x-3y\right)\left(x-1\right)=1\)
Lại có : 1 = 1.1 = (-1) . (-1)
Lập bảng xét các trường hợp :
\(x-1\) | \(1\) | \(-1\) |
\(x-3y\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) |
\(y\) | \(\frac{1}{3}\) | \(\frac{1}{3}\) |
Vậy các cặp(x,y) thỏa mãn là : \(\left(2;\frac{1}{3}\right);\left(0;\frac{1}{3}\right)\)
Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)
mà (3-2x)2+(y-5)20\(\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)
Vậy: \(x=\frac{3}{2};y=5\)
c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)
\(\Rightarrow\) Có hai trường hợp:
TH1: (x-3)(x-4)=0
Trong hai số (x-3) và (x-4) có một số bằng 0.
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)
TH2: (x-3)(x-4)<0
Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.
mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)
x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)
Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm
Vậy: x\(\in\left\{3;4\right\}\)
Bài 2:
c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)
Vậy:...
Bài 1 : Tính nhanh
a) 16.(38−2)−38(16−1)16.(38−2)−38(16−1)
b) (−41).(59+2)+59(41−2)(−41).(59+2)+59(41−2)
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3
bài này sẽ giải nếu x,y là số nguyên
ĐKXĐ: x≠2
A=\(\dfrac{3\left(x++y\right)\left(x-2\right)+1}{x-2}\)
A=\(\dfrac{3\left(x+y\right)\left(x-2\right)}{x-2}+\dfrac{1}{x-2}\)
A=3(x+y)+\(\dfrac{1}{x-2}\)
Vì x;y; A là số nguyên nên \(\dfrac{1}{x-2}\) cũng là số nguyên
hay x-2⋮1
hay x-2ϵƯ(1)=(-1;1)
suy ra x=1;3
tự tìm y
Cặp số nguyên dương (x,y) thỏa mãn
\(\left|\left(x^2+3\right)\left(y+1\right)\right|=16\)
Giúp mik với
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)
\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)
\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)
Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.
Ta có bảng:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
2-y | 1 | 3 | -3 | -1 |
y | 1 | -2 | 5 | 3 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).
b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.
Ta có bảng:
(x-1)2 | 1 | 2 | 4 |
x | 0 hoặc 2 | \(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) | -1 hoặc 3 |
y + 1 | -4 | -1 | |
y | -3 | -2 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).
a) (x+5)+(x+10)+.........+(x+60)=450
12x +(5+10+.........+60)=450
12x+390=450
12x=60
x=5
b) Gọi n là thương của phép chia a cho 54; =>54n+38=252+r =>r-2 chia hết cho 54
r là dư của phép chia a cho 18 (n,r thuộc N;r<14) =>54n =214+r =>r-2=0
=>a=54n + 38 =>n=(214+r):54 =>r =2
a=18x14+r =>214+r chia hết cho 54 =>a=18x14+2=254
=>54n+38=18x14+r =>216+r-2 chia hết cho 54
b. Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath