Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-4}{y-3}=\frac{4}{3}\left(y\ne3\right)\)
<=> 3(x-4)=4(y-3)
<=> 3x-12=4y-12
<=> 3x-13-12-4x+12=0
<=> 3x-4y=0
<=> 3x=4y
<=> \(\frac{x}{4}=\frac{y}{3}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{5}{1}=5\)
\(\Rightarrow\hept{\begin{cases}x=4\cdot5=20\\y=3\cdot5=15\end{cases}}\)
@Bảo Ngọc Đàm, lớp 6 thì chưa dùng dãy tỉ số bằng nhau được
Mặc dù cách làm đúng nhưng mình nghĩ lớp 6 dùng cách khác
\(\frac{x-4}{y-3}=\frac{4}{3};x-y=5\Leftrightarrow3\left(x-4\right)=4\left(y-3\right)\)
\(=3x-12=4y-12\Leftrightarrow3x=4y\Leftrightarrow3x-4y=0\)
Đến đây thì phân tích ra : \(\left(x-y\right)+\left(x-y\right)+\left(x-y\right)-y=0\)
\(\Rightarrow5+5+5-y=0\Leftrightarrow15-y=0\Leftrightarrow y=15\)
Thay vào \(x-y=5\Rightarrow x=15=5\Leftrightarrow x=20\)
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
Nếu cần gấp thì cho mình đi
x chia hết cho 2,ychia hết cho 3,z chia hết cho 5.
mỗi phẫn mẫu số là phần của nó ta có :
x:**
y:*** tổng là 30
z:*****
x là:
30:(5+2+3)X2=6
y là:
30:(5+3+2)x3=9
z là:
30-9-6=15
Đáp số :x:6
y:9
z:15
Nhớ cho k vì mình đầu tiên
a. \(\frac{x}{9}< \frac{7}{x}\)=> \(x.x< 9.7\)
=> \(x^2< 63\)
\(\frac{7}{x}< \frac{x}{6}\)=> \(7.6< x.x\)
=> \(42< x^2\)
Vậy \(42< x^2< 63\)
=> \(x^2=49\)
=> \(x=7\)
b. \(\frac{3}{y}< \frac{y}{7}\)=> \(7.3< y.y\)
=> \(21< y^2\)
\(\frac{y}{7}< \frac{4}{y}\)=> \(y.y< 4.7\)
=> \(y^2< 28\)
Vậy \(21< y^2< 28\)
=> \(y^2=25\)
=> \(y=5\)
quy đồng ra rất nhiều số
vô số số nguyên x,y